首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
《Physics letters. A》2020,384(24):126607
We study spin-dependent electron transport properties of a thermally driven interacting quantum dot. When an external magnetic field is applied to the quantum dot, the effective transmissions of spin-up and spin-down electrons are separated from each other and have a perfect mirror symmetry with respect to the incident energy at a certain gate voltage. A pure spin current can be induced in the system and modulated by a magnetic field. Under certain magnetic field strengths, a larger pure spin current can be obtained at gate voltages with the values in a range, not just at a specific voltage. These results indicate that the system can be worked as a pure spin current generator.  相似文献   

2.
We propose and analyze a new method for manipulation of a heavy-hole spin in a quantum dot. Because of spin-orbit coupling between states with different orbital momenta and opposite spin orientations, an applied rf electric field induces transitions between spin-up and spin-down states. This scheme can be used for detection of heavy-hole spin resonance signals, for the control of the spin dynamics in two-dimensional systems, and for determining important parameters of heavy holes such as the effective g factor, mass, spin-orbit coupling constants, spin relaxation, and decoherence times.  相似文献   

3.
We study the spin-polarized current through a vertical double quantum dot scheme. Both the Rashba spin–orbit (RSO) interaction inside one of the quantum dots and the strong intradot Coulomb interactions on the two dots are taken into account by using the second-quantized form of the Hamiltonian. Due to the existence of the RSO interaction, spin-up and spin-down electrons couple to the external leads with different strengths, and then a spin polarized current can be driven out of the middle lead by controlling a set of structure parameters and the external bias voltage. Moreover, by properly adjusting the dot levels and the external bias voltages, a pure spin current with no accompanying charge current can be generated in the weak coupling regime. We show that the difference between the intradot Coulomb interactions strongly influences the spin-polarized currents flowing through the middle lead and is undesirable in the generation of the net spin current. Based on the RSO interaction, the structure we propose can efficiently polarize the electron spin without the usage of any magnetic field or ferromagnetic material. This device can be used as a spin-battery and is realizable using the present available technologies.  相似文献   

4.
We report electronic control and measurement of an imbalance between spin-up and spin-down electrons in micron-scale open quantum dots. Spin injection and detection were achieved with quantum point contacts tuned to have spin-selective transport, with four contacts per dot for realizing a nonlocal spin-valve circuit. This provides an interesting system for studies of spintronic effects since the contacts to reservoirs can be controlled and characterized with high accuracy. We show how this can be used to extract in a single measurement the relaxation time for electron spins inside a ballistic dot (tau(sf) approximately equal to 300 ps) and the degree of spin polarization of the contacts (P approximately equal to 0.8).  相似文献   

5.
We have measured the relaxation time, T1, of the spin of a single electron confined in a semiconductor quantum dot (a proposed quantum bit). In a magnetic field, applied parallel to the two-dimensional electron gas in which the quantum dot is defined, Zeeman splitting of the orbital states is directly observed by measurements of electron transport through the dot. By applying short voltage pulses, we can populate the excited spin state with one electron and monitor relaxation of the spin. We find a lower bound on T1 of 50 micros at 7.5 T, only limited by our signal-to-noise ratio. A continuous measurement of the charge on the dot has no observable effect on the spin relaxation.  相似文献   

6.
彭菊  郁华玲  左芬 《中国物理 B》2010,19(12):127402-127402
We theoretically studied the nonlocal Andreev reflection with Rashba spin-orbital interaction in a triple-quantumdot(QD) ring,which is introduced as Rashba spin-orbital interaction to act locally on one component quantum dot.It is found that the electronic current and spin current are sensitive to the systematic parameters.The interdot spin-flip term does not play a leading role in causing electronic and spin currents.Otherwise the spin precessing term leads to shift of the peaks of the the spin-up and spin-down electronic currents in different directions and results in the spin current.Moreover,the spin-orbital interaction suppresses the nonlocal Andreev reflection,so we cannot obtain the pure spin current.  相似文献   

7.
《Physics letters. A》2014,378(11-12):892-898
Full counting statistics is a powerful tool to characterize the noise and correlations in transport through mesoscopic systems. In this work, we propose the theory of conditional spin counting statistics, i.e., the statistical fluctuations of spin-up (down) current given the observation of the spin-down (up) current. In the context of transport through a single quantum dot, it is demonstrated that a strong Coulomb interaction leads to a conditional spin counting statistics that exhibits a substantial change in comparison to that without Coulomb repulsion. It thus can be served as an effective way to probe the Coulomb interactions in mesoscopic transport systems. In case of spin polarized transport, it is further shown that the conditional spin counting statistics offers a transparent tool to reveal the spin-resolved bunching behavior.  相似文献   

8.
We address the precession of an ensemble of electron spins, each confined in a (In, Ga)As/GaAs self-assembled quantum dot. The quantum dot inhomogeneity is directly reflected in the precession of the optically oriented electron spins about an external magnetic field, which is subject to fast dephasing on a nanoseconds time scale. Proper periodic laser excitation allows synchronization of the electron spin precessions with the excitation cycle. The experimental conditions can be tailored such that eventually all (about a million) electron spins that are excited by the laser precess with a single frequency. In this regime the ensemble can be exploited during the single electron spin coherence times being in the microseconds range.  相似文献   

9.
Quantum computation requires a continuous supply of rapidly initialized qubits for quantum error correction. Here, we demonstrate fast spin state initialization with near unity efficiency in a singly charged quantum dot by optically cooling an electron spin. The electron spin is successfully cooled from 5 to 0.06 K at a magnetic field of 0.88 T applied in Voigt geometry. The spin cooling rate is of order 10(9) s-1, which is set by the spontaneous decay rate of the excited state.  相似文献   

10.
We consider a quantum dot attached to leads in the Coulomb blockade regime that has a spin 1 / 2 ground state. We show that, by applying an ESR field to the dot spin, the stationary current in the sequential tunneling regime exhibits a new resonance peak whose linewidth is determined by the single spin decoherence time T2. The Rabi oscillations of the dot spin are shown to induce coherent current oscillations from which T2 can be deduced in the time domain. We describe a spin inverter which can be used to pump current through a double dot via spin flips generated by ESR.  相似文献   

11.
李爱仙  段素青  张伟 《中国物理 B》2016,25(10):108506-108506
Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot(QD) by the coherent population trapping(CPT) and the electric dipole spin resonance(EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip–flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time.  相似文献   

12.
Spin relaxation from a triplet excited state to a singlet ground state in a semiconductor quantum dot is studied by employing an electrical pump-and-probe method. Spin relaxation occurs via co-tunneling when the tunneling rate is relatively large, confirmed by a characteristic square dependence of the relaxation rate on the tunneling rate. When co-tunneling is suppressed by reducing the tunneling rate, the intrinsic spin relaxation is dominated by spin-orbit interaction. We discuss a selection rule of the spin-orbit interaction based on the observed double-exponential decay of the triplet state.  相似文献   

13.
We analyze spin-dependent transport through spin valves composed of an interacting quantum dot coupled to two ferromagnetic leads. The spin on the quantum dot and the linear conductance as a function of the relative angle theta of the leads' magnetization directions is derived to lowest order in the dot-lead coupling strength. Because of the applied bias voltage spin accumulates on the quantum dot, which for finite charging energy experiences a torque, resulting in spin precession. The latter leads to a nontrivial, interaction-dependent, theta dependence of the conductance. In particular, we find that the spin-valve effect is reduced for all theta not equal pi.  相似文献   

14.
We study the decoherence of a single electron spin in an isolated quantum dot induced by hyperfine interaction with nuclei. The decay is caused by the spatial variation of the electron wave function within the dot, leading to a nonuniform hyperfine coupling A. We evaluate the spin correlation function and find that the decay is not exponential but rather power (inverse logarithm) lawlike. For polarized nuclei we find an exact solution and show that the precession amplitude and the decay behavior can be tuned by the magnetic field. The decay time is given by (planck)N/A, where N is the number of nuclei inside the dot, and the amplitude of precession decays to a finite value. We show that there is a striking difference between the decoherence time for a single dot and the dephasing time for an ensemble of dots.  相似文献   

15.
We show that by illuminating an InGaAs/GaAs self-assembled quantum dot with circularly polarized light, the nuclei of atoms constituting the dot can be driven into a bistable regime, in which either a thresholdlike enhancement or reduction of the local nuclear field by up to 3 T can be generated by varying the pumping intensity. The excitation power threshold for such a nuclear spin "switch" is found to depend on both the external magnetic and electric fields. The switch is shown to arise from the strong feedback of the nuclear spin polarization on the dynamics of the spin transfer from electrons to the nuclei of the dot.  相似文献   

16.
We demonstrate electrical control of the spin relaxation time T1 between Zeeman-split spin states of a single electron in a lateral quantum dot. We find that relaxation is mediated by the spin-orbit interaction, and by manipulating the orbital states of the dot using gate voltages we vary the relaxation rate W identical withT1(-1) by over an order of magnitude. The dependence of W on orbital confinement agrees with theoretical predictions, and from these data we extract the spin-orbit length. We also measure the dependence of W on the magnetic field and demonstrate that spin-orbit mediated coupling to phonons is the dominant relaxation mechanism down to 1 T, where T1 exceeds 1 s.  相似文献   

17.
In this paper we use a density matrix formalism to model the spin photocurrent obtained from a single self-assembled quantum dot photodiode under the influence of an applied strong polarized electromagnetic pulse and a gate voltage. We show that the degree of polarization of the output photocurrent generated by a circularly polarized pulse in a strongly anisotropic quantum dot can be switched as we increase the pulse intensity. A similar effect is observed in a quantum dot with weak anisotropic electron–hole exchange interaction by using an elliptically polarized pulse. In the latter, a shorter pulse is needed, which creates an effective exchange channel through the biexciton. This phenomenon can be used as a dynamical switch to invert the spin-polarization of the extracted current.  相似文献   

18.
We investigate the feasibility of manipulating individual spin in a superconducting junction where Bogoliubov quasiparticles can be trapped in discrete Andreev levels. We call this system an Andreev quantum dot (AQD) to be contrasted with a common semiconductor quantum dot. We show that the AQD can be brought into a spin-1/2 state. The coupling between the spin and superconducting current facilitates manipulation and measurement of this state. We demonstrate that one can operate two inductively coupled AQDs as a XOR gate; this enables quantum computing applications.  相似文献   

19.
We show that spin anisotropy can be transferred to an isotropic system by transport of a spin-quadrupole moment. We derive the quadrupole moment current and continuity equation and study a spin-valve structure consisting of two ferromagnets coupled to a quantum dot probing an impurity spin. The quadrupole backaction on their coupled spin results in spin torques and anisotropic spin relaxation which do not follow from standard spin-current considerations. We demonstrate the detection of the impurity spin by charge transport and its manipulation by electric fields.  相似文献   

20.
Graphene nanodisk is a graphene derivative with a closed edge. The trigonal zigzag nanodisk with size N has N-fold degenerated zero-energy states. It can be interpreted as a quantum dot with an internal degree of freedom. The ground state of nanodisk is a quasi-ferromagnet, which is a ferromagnetic-like state with a finite but very long life time. We investigate spin-filter effects in the system made of nanodisks and leads. A novel feature of the nanodisk spin filter is that its spin can be controlled by the spin current. We propose some applications for spintronics, such as spin memory, spin amplifier and spin diode. It is argued that a spin current is reinforced (rectified) by feeding it into a nanodisk spin amplifier (diode). Graphene nanodisk would be a promising candidate of future electronic and spintronic nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号