首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Strain energy density expressions are obtained from a field model that can qualitatively exhibit how the electrical and mechanical disturbances would affect the crack growth behavior in ferroelectric ceramics. Simplification is achieved by considering only three material constants to account for elastic, piezoelectric and dielectric effects. Cross interaction of electric field (or displacement) with mechanical stress (or strain) is identified with the piezoelectric effect; it occurs only when the pole is aligned normal to the crack. Switching of the pole axis by 90° and 180° is examined for possible connection with domain switching. Opposing crack growth behavior can be obtained when the specification of mechanical stress σ and electric field E or (σ,E) is replaced by strain ε and electric displacement D or (ε,D). Mixed conditions (σ,D) and (ε,E) are also considered. In general, crack growth is found to be larger when compared to that without the application of electric disturbances. This includes both the electric field and displacement. For the eight possible boundary conditions, crack growth retardation is identified only with (Eyy) for negative Ey and (Dyy) for positive Dy while the mechanical conditions σy or εy are not changed. Suitable combinations of the elastic, piezoelectric and dielectric material constants could also be made to suppress crack growth.  相似文献   

2.
Crack repair using an elastic filler   总被引:2,自引:0,他引:2  
The effect of repairing a crack in an elastic body using an elastic filler is examined in terms of the stress intensity levels generated at the crack tip. The effect of the filler is to change the stress field singularity from order 1/r1/2 to 1/r(1-λ) where r is the distance from the crack tip, and λ is the solution to a simple transcendental equation. The singularity power (1-λ) varies from (the unfilled crack limit) to 1 (the fully repaired crack), depending primarily on the scaled shear modulus ratio γr defined by G2/G1=γrε, where 2πε is the (small) crack angle, and the indices (1, 2) refer to base and filler material properties, respectively. The fully repaired limit is effectively reached for γr≈10, so that fillers with surprisingly small shear modulus ratios can be effectively used to repair cracks. This fits in with observations in the mining industry, where materials with G2/G1 of the order of 10-3 have been found to be effective for stabilizing the walls of tunnels. The results are also relevant for the repair of cracks in thin elastic sheets.  相似文献   

3.
The Mode-I transient response of a functionally graded piezoelectric medium is solved for a through crack under the in-plane mechanical and electric impact. Integral transforms and dislocation density functions are employed to reduce the problem to singular integral equations. Numerical results display the effects of the loading combination parameter λ and the material parameter βa on the dynamic stress intensity factor and electric displacement intensity factor. The energy density factor criterion is applied to obtain the maximum of the minimum energy density factor and the direction of crack initiation.  相似文献   

4.
This work studies the asymptotic stress and displacement fields near the tip of a stationary crack in an elastic–plastic nonhomogeneous material with the emphasis on the effect of material nonhomogeneities on the dominance of the crack tip field. While the HRR singular field still prevails near the crack tip if the material properties are continuous and piecewise continuously differentiable, a simple asymptotic analysis shows that the size of the HRR dominance zone decreases with increasing magnitude of material property gradients. The HRR field dominates at points that satisfy |α−1 ∂α/∂xδ|1/r, |α−12α/(∂xδxγ)|1/r2, |n−1n/∂xδ|1/[r|ln(r/A)|] and |n−12n/(∂xδxγ)|1/[r2|ln(r/A)|], in addition to other general requirements for asymptotic solutions, where α is a material property in the Ramberg–Osgood model, n is the strain hardening exponent, r is the distance from the crack tip, xδ are Cartesian coordinates, and A is a length parameter. For linear hardening materials, the crack tip field dominates at points that satisfy |Etan−1Etan/∂xδ|1/r, |Etan−12Etan/(∂xδxγ)|1/r2, |E−1E/∂xδ|1/r, and |E−12E/(∂xδxγ)|1/r2, where Etan is the tangent modulus and E is Young’s modulus.  相似文献   

5.
6.
A solution has been found to the problem of calculating the stress and displacement fields caused by a rectilinear dislocation in an anisotropic elastic plate. Special cases of anisotropy have been found with solutions represented by elementary functions.Certain problems in describing crystal plastic deformation phenomena make it vital to know the fields of the elastic stresses and displacements caused by an individual dislocation in a bounded crystal. It is interesting to study the effect of crystal boundaries on these fields with a simple model which approximates fairly closely to experimental conditions.The model selected is shown in Fig, 1. A dislocation with a Burgers vector (b1, b2, b3) is situated in an infinite elastic anisotropic plate of thickness 2h. The dislocation line is parallel to the plate boundaries. The following restriction is introduced in relation to the plate's elastic properties: the medium has a plane of elastic symmetry perpendicular to the dislocation line. The selection of the coordinate system and position of the dislocation are shown in Fig. 1. The requirement is to find the stresses and displacements at an arbitrary point in the plate.One limited special form of this problem has been solved by Kroupa [1]. The limitations which he introduced are as follows: the medium is isotropic, the dislocation is at the precise center of the band and the Burgers vector has only one component b2 differing from zero (the same coordinates were chosen in [1] as in Fig. 1).Thus Kroupa's results can be obtained from the results of the present work as a special case. Other special cases arising from this problem are those concerning the elastic stress and displacement fields caused by a dislocation in anisotropic semi-bounded [2] and bounded [3] media.It is immediately apparent that the problem is a plane one, in the sense that the fields to be found do not depend on coordinate z. Since the medium has a plane of elastic symmetry perpendicular to the dislocation line, it is clear from [4] that the system of stresses and strains in such a medium can be divided into two independent subsystems. The first of these is plane deformation with stress components xx, yy and xy differing from zero and displacement vector components ux and uy, the second is antiplane deformation with stress components xz and yz differing from zero and the displacement vector component uz.In the case under examination, the plane deformation is caused by the Burgers vector edge components bx and by and the antiplane deformation by the screw component bz. The solution is therefore divided into two stages, corresponding to edge and screw dislocations.In conclusion, I wish to thank A. M. Kosevich for his valuable advice and L. A. Pastur for his constant vigilance and assistance in the work.  相似文献   

7.
Cracking of ceramics with tetragonal perovskite grain structure is known to appear at different sites and scale level. The multiscale character of damage depends on the combined effects of electromechanical coupling, prevailing physical parameters and boundary conditions. These detail features are exhibited by application of the energy density criterion with judicious use of the mode I asymptotic and full field solution in the range of r/a=10−4 to 10−2 where r and a are, respectively, the distance to the crack tip and half crack length. Very close to the stationary crack tip, bifurcation is predicted resembling the dislocation emission behavior invoked in the molecular dynamics model. At the macroscopic scale, crack growth is predicted to occur straight ahead with two yield zones to the sides. A multiscale feature of crack tip damage is provided for the first time. Numerical values of the relative distances and bifurcation angles are reported for the PZT-4 ceramic subjected to different electric field to applied stress ratio and boundary conditions that consist of the specification of electric field/mechanical stress, electric displacement/mechanical strain, and mixed conditions. To be emphasized is that the multiscale character of damage in piezoceramics does not appear in general. It occurs only for specific combinations of the external and internal field parameters, elastic/piezoelectric/dielectric constants and specified boundary conditions.  相似文献   

8.
Two-dimensional solutions of the electric current, magnetic field and magneto elastic stress are presented for a magnetic material of a thin infinite plate containing an elliptical hole with an edge crack under uniform electric current. Using a rational mapping function, the each solution is obtained as a closed form. The linear constitutive equation is used for the magnetic field and the stress analyses. According to the electro-magneto theory, only Maxwell stress is caused as a body force in a plate which raises a plane stress state for a thin plate and the deformation of the plate thickness. Therefore the magneto elastic stress is analyzed using Maxwell stress. No further assumption of the plane stress state that the plate is thin is made for the stress analysis, though Maxwell stress components are expressed by nonlinear terms. The rigorous boundary condition expressed by Maxwell stress components is completely satisfied without any linear assumptions on the boundary. First, electric current, magnetic field and stress analyses for soft ferromagnetic material are carried out and then those analyses for paramagnetic and diamagnetic materials are carried out. It is stated that the stress components are expressed by the same expressions for those materials and the difference is only the magnitude of the permeability, though the magnetic fields Hx, Hy are different each other in the plates. If the analysis of magnetic field of paramagnetic material is easier than that of soft ferromagnetic material, the stress analysis may be carried out using the magnetic field for paramagnetic material to analyze the stress field, and the results may be applied for a soft ferromagnetic material. It is stated that the stress state for the magnetic field Hx, Hy is the same as the pure shear stress state. Solving the present magneto elastic stress problem, dislocation and rotation terms appear, which makes the present problem complicate. Solutions of the magneto elastic stress are nonlinear for the direction of electric current. Stresses in the direction of the plate thickness are caused and the solution is also obtained. Figures of the magnetic field and stress distribution are shown. Stress intensity factors are also derived and investigated for the crack length and the electric current direction.  相似文献   

9.
Fully developed turbulent flow and heat transfer in a concentric annular duct is investigated for the first time by using a direct numerical simulation (DNS) with isoflux conditions imposed at both walls. The Reynolds number based on the half-width between inner and outer walls, δ=(r2-r1)/2, and the laminar maximum velocity is Reδ=3500. A Prandtl number Pr=0.71 and a radius ratio r*=0.1 were retained. The main objective of this work is to examine the effect of the heat flux density ratio, q*=q1/q2, on different thermal statistics (mean temperature profiles, root mean square (rms) of temperature fluctuations, turbulent heat fluxes, heat transfer, etc.). To validate the present DNS calculations, predictions of the flow and thermal fields with q*=1 are compared to results recently reported in the archival literature. A good agreement with available DNS data is shown. The effect of heat flux ratio q* on turbulent thermal statistics in annular duct with arbitrarily prescribed heat flux is discussed then. This investigation highlights that heat flux ratio has a marked influence on the thermal field. When q* varies from 0 to 0.01, the rms of temperature fluctuations and the turbulent heat fluxes are more intense near the outer wall while changes in q* from 1 to 100, lead to opposite trends.  相似文献   

10.
Analytical solutions for an anti-plane Griffith moving crack inside an infinite magnetoelectroelastic medium under the conditions of permeable crack faces are formulated using integral transform method. The far-field anti-plane mechanical shear and in-plane electrical and magnetic loadings are applied to the magnetoelectroelastic material. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Field intensity factors for magnetoelectroelastic material are obtained. The stresses, electric displacements and magnetic inductions at the crack tip show inverse square root singularities. The moving speed of the crack have influence on the dynamic electric displacement intensity factor (DEDIF) and the dynamic magnetic induction intensity factor (DMIIF), while the dynamic stress intensity factor (DSIF) does not depend on the velocity of the moving crack. When the crack is moving at very lower or very higher speeds, the crack will propagate along its original plane; while in the range of Mc1 < M < Mc2, the propagation of the crack possibly brings about the branch phenomena in magnetoelectroelastic media.  相似文献   

11.
A crack with an electric displacement saturation zone in an electrostrictive material under purely electric loading is analyzed. A strip saturation model is here employed to investigate the effect of the electrical polarization saturation on electric fields and elastic fields. A closed form solution of electric fields and elastic fields for the crack with the strip saturation zone is obtained by using the complex function theory. It is found that the K I -dominant region is very small compared to the strip saturation zone. The generalized Dugdale zone model is also employed in order to investigate the effect of the saturation zone shape on the stress intensity factor. Using the body force analogy, the stress intensity factor for the asymptotic problem of a crack with an elliptical saturation zone is evaluated numerically.  相似文献   

12.
Rheological characterization of complex fluids in electro-magnetic fields   总被引:1,自引:0,他引:1  
The paper is focused on the experimental investigations and rheological characterisations in magnetic and electric fields of liquids based on water in crude oils emulsions, added with ferrofluids (two types of crude oils are used in experiments: asphaltic and paraffinic, respectively). The final samples disclose weakly effects in the presence of magnetic field (saturated magnetization: Mn < 300 [G]) and behave almost as isolators in electric field (conductivity: σ < 10−5 [S/m]). The main goal of the study is to explore to what extent rheometry of complex fluids in electric and magnetic fields is able to offer value information about the internal structure of the samples. The experimental results prove that anomalous rheological behaviour (thixotropy, non-monotonic flow curve or viscosity function) of a complex fluid (in our case, emulsions based on paraffinic oil) generate also thixotropic properties and non-monotonic answers in the presence ferrofluids, under low magnetic and/or electric fields intensity. Our prospective study suggests that novel experimental procedures based on interaction: electro-magnetic field–complex fluids can be developed, in order to determine indirectly some relevant rheological properties of the complex fluids with internal network structure.  相似文献   

13.
The steady planar sink flow through wedges of angle π/α with α≥1/2 of the upper convected Maxwell (UCM) and Oldroyd-B fluids is considered. The local asymptotic structure near the wedge apex is shown to comprise an outer core flow region together with thin elastic boundary layers at the wedge walls. A class of similarity solutions is described for the outer core flow in which the streamlines are straight lines giving stress and velocity singularities of O(r−2) and O(r−1), respectively, where r1 is the distance from the wedge apex. These solutions are matched to wall boundary layer equations which recover viscometric behaviour and are subsequently also solved using a similarity solution. The boundary layers are shown to be of thickness O(r2), their size being independent of the wedge angle. The parametric solution of this structure is determined numerically in terms of the volume flux Q and the pressure coefficient p0, both of which are assumed furnished by the flow away from the wedge apex in the r=O(1) region. The solutions as described are sufficiently general to accommodate a wide variety of external flows from the far-field r=O(1) region. Recirculating regions are implicitly assumed to be absent.  相似文献   

14.
15.
Summary  This paper deals with the theoretical treatment of a three-dimensional elastic problem governed by a cylindrical coordinate system (r,θ,z) for a medium with nonhomogeneous material property. This property is defined by the relation G(z)=G 0(1+z/a) m where G 0,a and m are constants, i.e., shear modulus of elasticity G varies arbitrarily with the axial coordinate z by the power product form. We propose a fundamental equation system for such nonhomogeneous medium by using three kinds of displacement functions and, as an illustrative example, we apply them to an nonhomogeneous thick plate (layer) subjected to an arbitrarily distributed load (not necessarily axisymmetric) on its surfaces. Numerical calculations are carried out for several cases, taking into account the variation of the nonhomogeneous parameter m. The numerical results for displacement and stress components are shown graphically. Received 10 May 1999; accepted for publication 15 August 1999  相似文献   

16.
The interaction of a screw dislocation with an interfacial edge crack in a two-phase piezoelectric medium is investigated. Closed-form solutions of the elastic and electrical fields induced by the screw dislocation are derived using the conformal mapping method in conjunction with the image principle. Based on the electroelastic fields derived, the stress and electric displacement intensity factors, the image force acting on the dislocation are given explicitly. We find that the stress and electric displacement intensity factors depend on the effective electroelastic material constants. In the case where one of two phases is purely elastic, the stress intensity factor and image force are plotted to illustrate the influences of electromechanical coupling effect, the position of the dislocation and the material properties on the interaction mechanism. The project supported by the Doctoral Foundation of Hebei Province (B2003113)  相似文献   

17.
A method is proposed which, for specific assumptions, allows us to determine the density distribution of a constant current flowing between electrodes in a plasma for plane parallel or radially symmetric electric and magnetic fields, allowing for anisotropic conductivity.Notation er, e, ez unit vectors in a cylindrical coordinate system - E, er, ez electric field strength vector and its components - V electric field potential - H, Hr, H, Hz magnetic field strength and its components - j current density vector - e electron charge - m electron mass - c velocity of light - momentum transfer time - 0 normal plasma conductivity - e electron cyclotron frequency - h unit vector in the direction of the magnetic field  相似文献   

18.
In this paper the stress and displacement fields near an embedded crack corner in a linear elastic medium are analytically computed. The conical-spherical coordinate system is introduced to solve this problem. It is observed that the strength of the stress singularity depends on the angle of the crack corner. The singularity becomes weaker, varying from r -1 to r 0, as the angle of the crack corner varies from 360° to 0°. Both symmetric and skew-symmetric loadings give the same variation of the behavior of the stress singularity. It is also found that the order of the singularity is independent of the Poisson's ratio, unlike the corner cracks at a free surface where Poisson's ratio affects the results.  相似文献   

19.
The ferrite and ferroelectric phase of magnetoelectroelastic (MEE) material can be selected and processed to control the macroscopic behavior of electron devices using continuum mechanics models. Once macro- and/or microdefects appear, the highly intensified magnetic and electric energy localization could alter the response significantly to change the design performance. Alignment of poling directions of piezomagnetic and piezoelectric materials can add to the complexity of the MEE material behavior to which this study will be concerned with.Appropriate balance of distortional and dilatational energy density is no longer obvious when a material possesses anisotropy and/or nonhomogeneity. An excess of the former could result in unwanted geometric change while the latter may lead to unexpected fracture initiation. Such information can be evaluated quantitatively from the stationary values of the energy density function dW/dV. The maxima and minima have been known to coincide, respectively, with possible locations of permanent shape change and crack initiation regardless of material and loading type. The direction of poling with respect to a line crack and the material microstructure described by the constitutive coefficients will be specified explicitly with reference to the applied magnetic field, electric field and mechanical stress, both normal and shear. The crack initiation load and direction could be predicted by finding the direction for which the volume change is the largest. In contrast to intuition, change in poling directions can influence the cracking behavior of MEE dramatically. This will be demonstrated by the numerical results for the BaTiO3–CoFe2O4 composite having different volume fractions where BaTiO3 and CoFe2O4 are, respectively, the inclusion and matrix.To be emphasized is that mode I and II crack behavior will not have the same definition as that in classical fracture mechanics where load and crack extension symmetry would coincide. A striking result is found for a mode II crack. By keeping the magnetic poling fixed, a reversal of electric poling changed the crack initiation angle from θ0=+80° to θ0=−80° using the line extending ahead of the crack as the reference. This effect is also sensitive to the distance from the crack tip. Displayed and discussed are results for r/a=10−4 and 10−1. Because the theory of magnetoelectroelasticity used in the analysis is based on the assumption of equilibrium where the influence of material microstructure is homogenized, the local space and temporal effects must be interpreted accordingly. Among them are the maximum values of (dW/dV)max and (dW/dV)min which refer to as possible sites of yielding and fracture. Since time and size are homogenized, it is implicitly understood that there is more time for yielding as compared to fracture being a more sudden process. This renders a higher dW/dV in contrast to that for fracture. Put it differently, a lower dW/dV with a shorter time for release could be more detrimental.  相似文献   

20.
The elastic field induced by a hemispherical inclusion with uniform eigeustralns in asemi-infinite elastic medium is solved by using the Green‘s function method and series expansion tech-nique. The exact solutions axe presented for the displacement and stress fields which can be expressedby complete elliptic integrals of the first, second, and third kinds and hypergeometric functions. Thepresent method can be used to determine the corresponding elastic fields when the shape of the inclusionis a spherical crown or a spherical segment. Finally, numerical results axe given for the displacementand stress fields along the axis of symmetry (x3-axis).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号