首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
The near tip field of mode II crack that grows in thin bodies with power hardening or perfectly plastic behavior is analyzed. It is shown that for power hardening behavior, the pseudo plane stress field possesses the logarithm singularity, i.e. σ (ln r)2/(n−1), (ln r)2n/(n − 1), where r is the distance from the crack tip, n the hardening exponent is σn. When n → ∞ the solution reduced to that for the perfectly plastic case.  相似文献   

3.
The electroelastic analysis of two bonded dissimilar piezoelectric ceramics with a crack perpendicular to and terminating at the interface is made. By using Fourier integral transform, the associated boundary value problem is reduced to a singular integral equation with generalized Cauchy kernel, the solution of which is given in closed form. Results are presented for a permeable crack under anti-plane shear loading and in-plane electric loading. Obtained results indicate that the electroelastic field near the crack tip in the homogeneous piezoelectric ceramic is dominated by a traditional inverse square-root singularity, while the electroelastic field near the crack tip at the interface exhibits the singularity of power law rα, r being distance from the interface crack tip and α depending on the material constants of a bi-piezoceramic. In particular, electric field has no singularity at the crack tip in a homogeneous solid, whereas it is singular around the interface crack tip. Numerical results are given graphically to show the effects of the material properties on the singularity order and field intensity factors.  相似文献   

4.
The asymptotic behavior of stress and strain near the tip of a Mode II crack growing in power law hardening material is analyzed by assuming that the crack grows straight ahead even though tests show otherwise. The results show that the stress and strain possess the singularities of (ln r)2/(n−1) and (ln r)2n/(n−1) respectively. The distance from the crack tip is r, and n is the hardening exponent, i.e. σn. The amplitudes of the stress and strain near the crack tip are determined by the asymptotic analysis.  相似文献   

5.
This work studies the asymptotic stress and displacement fields near the tip of a stationary crack in an elastic–plastic nonhomogeneous material with the emphasis on the effect of material nonhomogeneities on the dominance of the crack tip field. While the HRR singular field still prevails near the crack tip if the material properties are continuous and piecewise continuously differentiable, a simple asymptotic analysis shows that the size of the HRR dominance zone decreases with increasing magnitude of material property gradients. The HRR field dominates at points that satisfy |α−1 ∂α/∂xδ|1/r, |α−12α/(∂xδxγ)|1/r2, |n−1n/∂xδ|1/[r|ln(r/A)|] and |n−12n/(∂xδxγ)|1/[r2|ln(r/A)|], in addition to other general requirements for asymptotic solutions, where α is a material property in the Ramberg–Osgood model, n is the strain hardening exponent, r is the distance from the crack tip, xδ are Cartesian coordinates, and A is a length parameter. For linear hardening materials, the crack tip field dominates at points that satisfy |Etan−1Etan/∂xδ|1/r, |Etan−12Etan/(∂xδxγ)|1/r2, |E−1E/∂xδ|1/r, and |E−12E/(∂xδxγ)|1/r2, where Etan is the tangent modulus and E is Young’s modulus.  相似文献   

6.
The interaction between crack and electric dipole of piezoelectricity   总被引:4,自引:0,他引:4  
Discrete dipoles located near the crack tip play an important role in nonlinear electric field induced fracture of piezoelectric ceramics. A physico-mathematical model of dipole is constructed of two generalized concentrated piezoelectric forces with equal density and opposite sign. The interaction between crack and electric dipole in piezoelectricity is analyzed. The closed form solutions, including those for stress and electric displacement, crack opening displacement and electric potential, are obtained. The function of piezoelectric anisotropic direction,p a (θ)=cosθ+p a sinθ, can be used to express the influence of a dipole's direction. In the case that a dipole locates near crack tip, the piezoelectric stress intensity factor is a power function with −3/2 index of the distance between dipole and crack tip. Supported by National Natural Science Foundation of China(No. 10072033)  相似文献   

7.
8.
Penny-shaped crack in transversely isotropic piezoelectric materials   总被引:2,自引:0,他引:2  
Using a method of potential functions introduced successively to integrate the field equations of three-dimensional problems for transversely isotropic piezoelectric materials, we obtain the so-called general solution in which the displacement components and electric potential functions are represented by a singular function satisfying some special partial differential equations of 6th order. In order to analyse the mechanical-electric coupling behaviour of penny-shaped crack for above materials, another form of the general solution is obtained under cylindrical coordinate system by introducing three quasi-harmonic functions into the general equations obtained above. It is shown that both the two forms of the general solutions are complete. Furthermore, the mechanical-electric coupling behaviour of penny-shaped crack in transversely isotropic piezoelectric media is analysed under axisymmetric tensile loading case, and the crack-tip stress field and electric displacement field are obtained. The results show that the stress and the electric displacement components near the crack tip have (r −1/2) singularity. The project supported by the Natural Science Foundation of Shaanxi Province, China  相似文献   

9.
A finite element analysis and a experimental test were performed to show that the terms with r−1/2 and 1/2 in the eigenfunction expansion of the strains can describe the crack tip strain distribution with sufficient accuracy. A set of two linear equations can be obtained to determine the stress intensity factor KI using only two strain-gages. Errors within 5% can be achieved provided that the two strain-gages are placed at the appropriate locations. The technique can be developed to treat crack bodies with irregular geometry and complex loading.  相似文献   

10.
This paper presents the governing equations of electrostrictive materials. The stress and electric field solutions for an infinite plate with a rigid elliptic conductor under applied load at infinity are given. The asymptotic expansions of the solution for a narrow elliptic conductor show that the stresses and the electric fields near the end of a narrow elliptic conductor possess r−1 and r−1/2 forms respectively in a local coordinate system with the origin at its focus.  相似文献   

11.
The ferrite and ferroelectric phase of magnetoelectroelastic (MEE) material can be selected and processed to control the macroscopic behavior of electron devices using continuum mechanics models. Once macro- and/or microdefects appear, the highly intensified magnetic and electric energy localization could alter the response significantly to change the design performance. Alignment of poling directions of piezomagnetic and piezoelectric materials can add to the complexity of the MEE material behavior to which this study will be concerned with.Appropriate balance of distortional and dilatational energy density is no longer obvious when a material possesses anisotropy and/or nonhomogeneity. An excess of the former could result in unwanted geometric change while the latter may lead to unexpected fracture initiation. Such information can be evaluated quantitatively from the stationary values of the energy density function dW/dV. The maxima and minima have been known to coincide, respectively, with possible locations of permanent shape change and crack initiation regardless of material and loading type. The direction of poling with respect to a line crack and the material microstructure described by the constitutive coefficients will be specified explicitly with reference to the applied magnetic field, electric field and mechanical stress, both normal and shear. The crack initiation load and direction could be predicted by finding the direction for which the volume change is the largest. In contrast to intuition, change in poling directions can influence the cracking behavior of MEE dramatically. This will be demonstrated by the numerical results for the BaTiO3–CoFe2O4 composite having different volume fractions where BaTiO3 and CoFe2O4 are, respectively, the inclusion and matrix.To be emphasized is that mode I and II crack behavior will not have the same definition as that in classical fracture mechanics where load and crack extension symmetry would coincide. A striking result is found for a mode II crack. By keeping the magnetic poling fixed, a reversal of electric poling changed the crack initiation angle from θ0=+80° to θ0=−80° using the line extending ahead of the crack as the reference. This effect is also sensitive to the distance from the crack tip. Displayed and discussed are results for r/a=10−4 and 10−1. Because the theory of magnetoelectroelasticity used in the analysis is based on the assumption of equilibrium where the influence of material microstructure is homogenized, the local space and temporal effects must be interpreted accordingly. Among them are the maximum values of (dW/dV)max and (dW/dV)min which refer to as possible sites of yielding and fracture. Since time and size are homogenized, it is implicitly understood that there is more time for yielding as compared to fracture being a more sudden process. This renders a higher dW/dV in contrast to that for fracture. Put it differently, a lower dW/dV with a shorter time for release could be more detrimental.  相似文献   

12.
In this paper, an improved plate impact experimental technique is presented for studying dynamic fracture mechanism of materials, under the conditions that the impacting loading is provided by a single pulse and the loading time is in the sub-microsecond range. The impacting tests are carried out on the pressure-shear gas gun. The loading rate achieved is dK/dt∼108 MPa m1/2s−1. With the elimination of influence of the specimen boundary, the plane strain state of a semi-infinite crack in an infinite elastic plate is used to simulate the deformation fields of crack tip. The single pulses are obtained by using the “momentum trap” technique. Therefore, the one-time actions of the single pulse are achieved by eradicating the stress waves reflected from the specimen boundary or diffracted from the crack surfaces. In the current study, some important phenomena have been observed. The special loading of the single pulse can bring about material damage around crack tip, and affect the material behavior, such as kinking and branching of the crack propagation. Failure mode transitions from mode I to mode II crack are observed under asymmetrical impact conditions. The mechanisms of the dynamic crack propagation are consistent with the damage failure model. The project supported by the National Natural Science Foundation of China (No. 19672066 and 18981180-4) and the Key Project of Chinese Academy of Sciences (No. KJ951-1-20)  相似文献   

13.
The problem stated in the title is investigated with special emphasis on the first three terms of the stress expansion, proportional to r -1/2, r 0=1 and r 1/2 respectively, where r denotes the distance to the crack front. The particular case of a plane crack with a straight front and of stresses independent of the distance along the latter is studied first. It is shown that the classical plane strain and antiplane solutions must be supplemented by a few additional particular solutions to obtain the full stress expansion. The general case is then considered. The stress expansion is studied by writing the field equations (equilibrium, strain compatibility and boundary conditions) in a system of suitable curvilinear coordinates. It is shown that the number of independent constants in the stress expansion is the same as in the particular case considered previously but that the curvatures of the crack and its front and the non-uniformity of the stresses along the latter induce the appearance of corrective terms in this expansion.  相似文献   

14.
The character of the local stresses and displacements are determined for a through crack with finite radius of curvature in a finite thickness plate. Numerical results obtained from the boundary element method show that the solutions are sufficiently accurate for /a ≤ 0.03 and 0.03 ≤ /a ≤ 0.1, where and a represent, respectively, the crack front radius of curvature and crack dimension such that a is the width of a through thickness crack and the depth of a part-through crack. For /a ≤ 0.1, the asymptotic singular stress field dominates such that the Mode I stress intensity factor K1 can be evaluated. As the crack border radius of curvature is increased for /a ≥ 0.1, the non-singular terms become significant such that KI would no longer dominate. Other failure criteria would have to be invoked to address fracture initiation.  相似文献   

15.
The stress-strain distribution near the tip of a Mode I growing crack in a power hardening plastic material is reconsidered. Two types of asymptotic equations are derived and solved numerically. It is shown that when the crack tip is approached, the stress is singular of the order rδ, while the strain is singular of the order r, where r is the distance measured from the crack tip. The parameter δ is a constant; it depends on the hardening exponent n being greater than one.  相似文献   

16.
The tendency of moving cracks to spread along the preferred directions of material anisotropy is treated. Depending on the velocity of crack propagation, the change of material properties in orthogonal planes is shown to affect the bifurcation characteristics. The problem is reduced to a system of dual integral equations that can be solved in a standard fashion. Of particular interest is the dynamic stress field near the tip of a moving crack in an orthotropic material. Although the 1√r stress singularity is preserved with r being the radial distance measured from the crack tip, the angular variations of the stresses are dependent on crack speed and material anisotropy. The possibility of crack bifurcation is examined by application of the strain energy density criterion for several composite systems. Crack branching is found to be enhanced by material anisotropy, a phenomenon that is not uncommon in composite materials.  相似文献   

17.
T-stress as an important parameter characterizing the stress field around a cracked tip has attracted much attention. This paper concerns the T-stress near a cracked tip in a magnetoelectroelastic solid. By applying the Fourier transform, we solve the associated mixed boundary-value problem. Adopting crack-faces electromagnetic boundary conditions nonlinearly dependent on the crack opening displacement, coupled dual integral equations are derived. Then, the closed-form solution for the T-stress is obtained. A comparison of the T stresses for a cracked magnetoelectroelastic solid and for a cracked purely elastic material is made. Obtained results reveal that in addition to applied mechanical loading, the T-stress is dependent on electric and magnetic loadings for a vacuum crack.  相似文献   

18.
In this paper, a mixed electric boundary value problem for a two-dimensional piezoelectric crack problem is presented, in the sense that the crack face is partly conducting and partly impermeable. By the analytical continuation method, the unknown electric charge distributions on the upper and lower conducting crack faces are reduced to two decoupled singular integral equations and then these two equations are converted into algebraic equations to find the full field solution. Though the results suggest that the stress intensity factors at the crack tip are identical to those of conventional piezoelectric materials, but the electric field and electric displacement are related to the electric boundary conditions on the crack faces. The electric field and electric displacement are singular not only at crack tips but also at the junctures between the impermeable part and conducting parts. Numerical results for the variations of the electric field, electric displacement field and J-integral with respect to the normalized impermeable crack length are shown. Some discussions for the energy release rate and the J-integral are made.  相似文献   

19.
Stress intensity factors for an elliptical crack under shear loading are investigated. The differential-integral equation is applied to solve the problem. It is found that, if the integrated function takes the form of (1 − (x/a)2 − (y/b)2)1/2 xm yn, a and b being the major and minor axis of the ellipse, the relevant differential-integral equation can be evaluated. Using this property, the boundary value problems are solved for the shear loading in the form of power function. Finally, results are presented for twelve particular example problems.  相似文献   

20.
Reanalyzed in detail is the stress and strain distribution near the tip of a Mode I steadily growing crack in an elastic and perfectly-plastic material. The crack tip region is divided into five angular sectors, one of which is singular in character and represents a rapid transition zone that becomes a line of strain discontinuity in the limit as crack tip is approached. It is shown for an incompressible material (ν=0.5) under plane strain that the local strain in all the angular sectors possesses the same logarithm singularity, i.e., In r where r is the radial distance measured from the crack tip. This result also prevails for the compressible material ( v < 0.5) and resolves a long standing controversy concerning the strain singularity in the sector just ahead of the crack tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号