首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 856 毫秒
1.
Treatment of β-diketiminate ligands bearing different N-aryl monoatomic substituents [HLH = (C6H5)N = C(Me)CH=C(Me)NH(C6H5), HLF = (2,6-F2C6H3)N=C(Me)CH=C(Me)NH(2,6-F2C6H3), and HLCl = (2,6-Cl2C6H3)N=C(Me)CH=C(Me)NH(2,6-Cl2C6H3)] with Ln(CH2SiMe3)3(THF)2 (Ln = Y and Lu) afforded a variety of β-diketiminato rare-earth metal complexes depending on substituents, namely, phenyl ring C–H bond activated complexes (L')(LH)Lu(THF) ( 1b , L' = (C6H4)N = C(Me)CH=C(Me)N(C6H5)), six-coordinate homoleptic complexes (LH)3Ln [Ln = Y ( 1aa ), Lu ( 1bb )], five-coordinate monoalkyl complexes (LF)2Ln(CH2SiMe3) [Ln = Y ( 2a ), Lu ( 2b )], and four-coordinate dialkyl complexes (LCl)Ln(CH2SiMe3)2 [Ln = Y ( 3a ), Lu ( 3b )]. All these complexes were characterized with NMR spectroscopy, and lutetium complexes 1b , 1bb and 3b were structurally validated by single-crystal X-ray diffraction analysis. Moreover, dialkyl complexes 3 promoted the polymerization of 2-vinylpyridine (2-VP) to produce atactic poly(2-vinylpyridine) (P2VP) with quantitative yield. On activation with an equimolar amount of [Ph3C][B(C6F5)4], complexes 3 afforded highly isotactic P2VP with an mm value up to 94 %. Both 1H NMR spectrum and MALDI-TOF mass analysis of an oligomer indicate that the polymerization was initiated by coordination insertion of 2-VP into the Y-CH2SiMe3 bond.  相似文献   

2.
Two types of sandwich complexes (η5‐MeOCH2CH2C9H6) Ln (η8‐C8H8) (THF)n [Ln=La (1), Nd(2), n=0; Sm(3), Dy (4) and Er (5). n = l] and (η5‐C4H7OCH2C9H6)Ln(η8‐C8H8) (THF) [Ln = La (6), Nd(7). Sm(8). Dy (9) and Er (10)] were synthesized by the reactions of LnCl3 with equivalent mole of K2C8H8, followed by treatment with corresponding potassium salt of ether‐substituted indenide. The molecular structures of 3 and 8 were determined by single crystal X‐ray diffraction. (η5 ‐MeOCH2CH2C9H6) Sm (η8‐C8H8) (THF) (3) monoclinic. Pt1/c, a = 1.4793(3) nm, b = 0.8716 (2) nm, c = 1.6149 (3) nm, β = 98. 17(3), V = 2.0612(7) nm3, Z = 4, R(F)=0.0362. (η5‐C4H7OCH2C9H6)Sm(η8‐C8H8)(THF) (8) orthorhombic. p212121. a = 0.8754(2) nm, b = 1.1000(2) nm, c = 2.3117 (5) nm, V = 2.2260(8) nm3, Z=4, R(F) =0.0497.  相似文献   

3.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

4.
Organometallic Compounds of the Lanthanides. 133 Synthesis and Characterization of donor-functionalised ansa -Metallocenes of Yttrium, Neodymium, Samarium, Erbium, and Lutetium The reaction of Me2SiCl2 with K[C5H4tBu], Li[C5H4SiMe3] or K[C5H3tBuMe-3] followed by treatment with K[C5H4CH2CH2NMe2] yields mixed substituted dicyclopentadienyldimethylsilanes which after double deprotonation with KH afford the dipotassium salts K2[Me2Si(C5H3tBu-3)(C5H3CH2CH2NMe2-3)] ( 1 ), K2[Me2Si · (C5H3SiMe3-3)(C5H3CH2CH2NMe2-3)] ( 2 ), and K2[Me2Si · (C5H2tBu-3-Me-5)(C5H3CH2CH2NMe2-3)] ( 3 ), respectively. The reaction of 1 , 2 , or 3 with LnCl3(THF)x (Ln = Y, La, Nd, Sm, Er, Lu) leads to the complexes [Me2Si(C5H3tBu-3) · (C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 4 a ), Sm ( 4 c ), Lu ( 4 e )], [Me2Si(C5H3SiMe3-3)(C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 5 a ), Sm ( 5 c ), Lu ( 5 e )], and [Me2Si(C5H2tBu-3-Me-5)(C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 6 a ), Nd ( 6 b ), Sm ( 6 c ), Er ( 6 d ), Lu ( 6 e )], respectively. Alkylation of 4 a , 4 c , 5 a , and 6 b , 6 e with LiCH3, LiCH2SiMe3, and LiCH(SiMe3)2 produces the alkylmetallocenes [Me2Si(C5H3tBu-3) · (C5H3CH2CH2NMe2-3)]LnR [R = CH3, Ln = Y ( 7 a ), Sm ( 7 c ); R = CH2SiMe3, Ln = Y ( 8 a )], [Me2Si(C5H3SiMe3-3) · (C5H3CH2CH2NMe2-3)]YCH3 ( 9 a ), and [Me2Si(C5H2tBu3-Me-5)(C5H3CH2CH2NMe2-3)]LnR (R = CH3, Ln = Lu ( 10 e ); R = CH2SiMe3, Ln = Lu ( 11 e ); R = CH(SiMe3)2, Ln = Nd ( 12 b ), Lu ( 12 e )], respectively. All new compounds were characterized by elemental analyses, NMR spectroscopy and mass spectrometry. The molecular structure of 6 c and 6 e was determined by single crystal X-ray structure analysis.  相似文献   

5.
Organometallic Compounds of the Lanthanides. 139 Mixed Sandwich Complexes of the 4 f Elements: Enantiomerically Pure Cyclooctatetraenyl Cyclopentadienyl Complexes of Samarium and Lutetium with Donor‐Functionalized Cyclopentadienyl Ligands The reactions of [K{(S)‐C5H4CH2CH(Me)OMe}], [K{(S)‐C5H4CH2CH(Me)NMe2}] and [K{(S)‐C5H4CH(Ph)CH2NMe2}] with the cyclooctatetraenyl lanthanide chlorides [(η8‐C8H8)Ln(μ‐Cl)(THF)]2 (Ln = Sm, Lu) yield the mixed cyclooctatetraenyl cyclopentadienyl lanthanide complexes [(η8‐C8H8)Sm{(S)‐η5 : η1‐C5H4CH2CH(Me)OMe}] ( 1 a ), [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH2CH(Me)NMe2}] (Ln = Sm ( 2 a ), Lu ( 2 b )) and [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH(Ph)CH2NMe2}] (Ln = Sm ( 3 a ), Lu ( 3 b )). For comparison, the achiral compounds [(η8‐C8H8)Ln{η5 : η1‐C5H4CH2CH2NMe2}] (Ln = Sm ( 4 a ), Lu ( 4 b )) are synthesized in an analogous manner. 1H‐, 13C‐NMR‐, and mass spectra of all new compounds as well as the X‐ray crystal structures of 3 b and 4 b are discussed.  相似文献   

6.
The mixed sandwich complexes [(C8H8)Ln(C5Me4Et)(THF)x] (Ln = Y 1, La 2, Nd 3, Sm 4, Gd 5, Tm 6, Lu 7), [(C8H8)Ln{C5H2(SiMe3)3}(THF)x (Ln = Pr 8, Dy 9) and [(C8H8)Pr(C5Ph5)] (10), have been prepared by the metathetic reaction of [(C8H8)Ln(μ-Cl)-(THF)n]2 with NaC5Me4Et, LiC5H2(SiMe3)3 and NaC5Ph5 in THF. The 1:2 reaction of 7 with acetylacetone results in displacement of the (C8H8)-ligand to generate the new complex [(C5Me4Et)Ln(acac)2] (acac = [CH3C(O)CHC(O)CH3]) (11). The molecular structures of 7 (monoclinic space group P21/c with a = 990.4(5) pm, b = 1228.2(5) pm, c = 2757.5(16) pm, β = 93.92(4)°, V = 3346(3)·10−30 m3 and Z = 8) and 11 (triclinic space group P1̄ with a = 957.3(3) pm, b = 1064.5(2) pm, c = 1068.3(2) pm, α = 94.19(12)°, β = 96.37(17)°, γ = 96.71(16)°, V = 1070.3(4)·10−30 m3 and Z = 2) have been determined by X-ray diffraction.  相似文献   

7.
The preparation and characterization of a series of neutral rare‐earth metal complexes [Ln(Me3TACD)(η3‐C3H5)2] (Ln=Y, La, Ce, Pr, Nd, Sm) supported by the 1,4,7‐trimethyl‐1,4,7,10‐tetraazacyclododecane anion (Me3TACD?) are reported. Upon treatment of the neutral allyl complexes [Ln(Me3TACD)(η3‐C3H5)2] with Brønsted acids, monocationic allyl complexes [Ln(Me3TACD)(η3‐C3H5)(thf)2][B(C6X5)4] (Ln=La, Ce, Nd, X=H, F) were isolated and characterized. Hydrogenolysis gave the hydride complexes [Ln(Me3TACD)H2]n (Ln=Y, n=3; La, n=4; Sm). X‐ray crystallography showed the lanthanum hydride to be tetranuclear. Reactivity studies of [Ln(Me3TACD)R2]n (R=η3‐C3H5, n=0; R=H, n=3,4) towards furan derivatives includes hydrosilylation and deoxygenation under ring‐opening conditions.  相似文献   

8.
Four novel bridged‐amidines H2L {1,4‐R1[C(=NR2)(NHR2)]2 [R1=C6H4, R2=2,6‐iPr2C6H3 (H2L1); R1=C6H4, R2=2,6‐Me2C6H3 (H2L2); R1=C6H10, R2=2,6‐iPr2C6H3 (H2L3); R1=C6H10, R2=2,6‐Me2C6H3 (H2L4)]} were synthesized in 65%–78% isolated yields by the condensation reaction of dicarboxylic acid with four equimolar amounts of amines in the presence of PPSE at 180°C. Alkane elimination reaction of Ln(CH2SiMe3)3(THF)2 (Ln=Y, Lu) with 0.5 equiv. of amidine in THF at room temperature afforded the corresponding bimetallic rare earth alkyl complexes (THF)(Me3SiCH2)2LnL1Ln(CH2SiMe3)2(THF) [Ln=Y ( 1 ), Lu ( 2 )], (THF)(Me3SiCH2)2LnL2Ln‐ (CH2SiMe3)2(THF) [Ln=Y ( 3 ), Lu ( 4 )], (THF)(Me3SiCH2)2YL3Y(CH2SiMe3)2(THF) ( 5 ), (THF)(Me3SiCH2)2YL4‐ Y(CH2SiMe3)2(THF) ( 6 ) in 72% –80% isolated yields. These neutral complexes showed activity towards L‐lactide polymerization in toluene at 70°C to give high molecular weight (M>104) and narrow molecular weight distribution (Mw/Mn≦1.40) polymers  相似文献   

9.
Several lanthanide chelates of the fluorochloroalkyl β-diketones Ln(CF2ClCOCHCOR)3 ·nH2O were prepared (2, Ln=Eu; 2a, R=C(CH3)3, n=0; 2b, R=C6F5, n=0; 2c, R=CF2Cl, n=2. 3, Ln=Pr; 3a, R=C (CH3)3, n=0; 3b, R=C6F5, n=l; 3c, R=CF2Cl, n=2. 4, Ln=La, R=C6H5, n=0) and the NMR shift data of compounds 2 and 3 had been determined using alcohols, ether, ketones and amine as substrates. With alcohol, ether and ketone, compounds 2 induces shifts similar to that induced by Eu (fod)3. However due to the high solubility of the chelates in non-polar organic solvents such as CHCl3 and CCl4 and the absence of 1H signal from compounds 2b and 2c, their application as a series of new 1H NMR shift reagents seems promising.  相似文献   

10.
The reaction of the donor‐functionalised N,N‐bis(2‐{pyrid‐2‐yl}ethyl)hydroxylamine and [LnCp3] (Cp=cyclopentadiene) resulted in the formation of bis(cyclopentadienyl) hydroxylaminato rare‐earth metal complexes of the general constitution [Ln(C5H5)2{ON(C2H4o‐Py)2}] (Py= pyridyl) with Ln=Lu ( 1 ), Y ( 2 ), Ho ( 3 ), Sm ( 4 ), Nd ( 5 ), Pr ( 6 ), La ( 7 ). These compounds were characterised by elemental analysis, mass spectrometry, NMR spectroscopy (for compounds 1 , 2 , 4 and 7 ) and single‐crystal X‐ray diffraction experiments. The complexes exhibit three different aggregation modes and binding motifs in the solid state. The late rare‐earth metal atoms (Lu, Y, Ho and Sm) form monomeric complexes of the formula [Ln(C5H5)22‐ON(C2H4‐η1o‐Py)(C2H4o‐Py)}] ( 1 – 4 , respectively), in which one of the pyridyl nitrogen donor atoms is bonded to the metal atom in addition to the side‐on coordinating hydroxylaminato unit. The larger Nd3+ and Pr3+ ions in 5 and 6 make the hydroxylaminato unit capable of dimerising through the oxygen atoms. This leads to the dimeric complexes [(Ln(C5H5)2{μ‐η12‐ON(C2H4o‐Py)2})2] without metal–pyridine bonds. Compound 7 exhibits a dimeric coordination mode similar to the complexes 5 and 6 , but, in addition, two pyridyl functions coordinate to the lanthanum atoms leading to the [(La(C5H5)2{ON(C2H4o‐Py)}{μ‐η12‐ON(C2H4‐η1o‐Py)})2] complex. The aggregation trend is directly related to the size of the metal ions. The complexes with coordinative pyridine–metal bonds show highly dynamic behaviour in solution. The two pyridine nitrogen atoms rapidly change their coordination to the metal atom at ambient temperature. Variable‐temperature (VT) NMR experiments showed that this dynamic exchange can be frozen on the NMR timescale.  相似文献   

11.
于晓燕  金国新  翁林红 《中国化学》2002,20(11):1256-1262
IntroductionUptodateconsiderableattentionhasbeendevotedtothemetalcomplexeswithchalcogenolateligands .1,2Recentlytransitionmetalcomplexescontainingachelating1,2 dicarba closo dodecabarane 1,2 dichalcogenolatelig ands3 10 haveattractedagreatdealofinterestduetot…  相似文献   

12.
Organometallic Compounds of the Lanthanides. 155 [1] Synthesis and Characterization of New Lanthanocene Complexes containing Silylated Cyclopentadienyl Ligands The trichlorides of yttrium, samarium, and lutetium react with two equiv. of K[C5H4SiEt3] ( 1 ) to form the dimeric compounds [(η5‐C5H4SiEt3)2LnCl]2 (Ln = Y ( 2 ), Sm ( 3 ), Lu ( 4 )). These react with one equiv. of methyllithium to give the corresponding dimeric lanthanocenemethyl complexes [(η5‐C5H4SiEt3)2LnMe]2 (Ln = Y ( 5 ), Sm ( 6 ), Lu ( 7 )). The reaction between samarium trichloride and lutetium trichloride, respectively with two equiv. of K[1, 3‐C5H3(SiMe3)2] followed by one equiv. of methyllithium results in the formation of the monomeric methyl complexes [η5‐1, 3‐C5H3(SiMe3)2]2LnMe(THF) (Ln = Sm ( 8 ), Lu ( 9 )). The new compounds have been characterized by elemental analysis, mass spectrometry, 1H‐ and 13C{1H} NMR spectroscopy, as well as 1 — 7 by single crystal X‐ray structure analysis.  相似文献   

13.
Synthesis and NMR. Spectra of Novel Lanthanide-Cobalt Sandwich Compounds The reaction of [(C5H5)Co{P(O)(OR)2}2{P(OH)(OR)2}] ( 3 , R = CH3, C2H5) with lanthanide(III) compounds yields the cationic trinuclear complexes [{(C5H5)Co[P(O)(OR)2]3}2Ln]X? ( 2 , R = CH3, C2H5; Ln = La, Eu, Pr; X = BF4, BPh4). According to thermogravimetric and NMR. studies these compounds do not contain additional coordinated water molecules. It is therefore supposed that the central lanthanide ion has a regular sixfold coordination of phosphoryl ligands. The 31P- and 1H-NMR. spectra of 2 (R = CH3; Ln = La, Eu, Pr) and 3 are discussed. It can be shown that the Fermi contact shift as well as the coordination shift make significant contributions to the observed lanthanide induced shift of the cyclopentadienyl signal.The dominating influence of the Fermi contact interaction on the 31P chemical shift is in accord with theoretical considerations and comparable experimental values. The temperature dependence of the proton chemical shifts of 2 (R = CH3; Ln = Eu) is also discussed.  相似文献   

14.
A series of rare‐earth‐metal–hydrocarbyl complexes bearing N‐type functionalized cyclopentadienyl (Cp) and fluorenyl (Flu) ligands were facilely synthesized. Treatment of [Y(CH2SiMe3)3(thf)2] with equimolar amount of the electron‐donating aminophenyl‐Cp ligand C5Me4H‐C6H4o‐NMe2 afforded the corresponding binuclear monoalkyl complex [({C5Me4‐C6H4o‐NMe(μ‐CH2)}Y{CH2SiMe3})2] ( 1 a ) via alkyl abstraction and C? H activation of the NMe2 group. The lutetium bis(allyl) complex [(C5Me4‐C6H4o‐NMe2)Lu(η3‐C3H5)2] ( 2 b ), which contained an electron‐donating aminophenyl‐Cp ligand, was isolated from the sequential metathesis reactions of LuCl3 with (C5Me4‐C6H4o‐NMe2)Li (1 equiv) and C3H5MgCl (2 equiv). Following a similar procedure, the yttrium‐ and scandium–bis(allyl) complexes, [(C5Me4‐C5H4N)Ln(η3‐C3H5)2] (Ln=Y ( 3 a ), Sc ( 3 b )), which also contained electron‐withdrawing pyridyl‐Cp ligands, were also obtained selectively. Deprotonation of the bulky pyridyl‐Flu ligand (C13H9‐C5H4N) by [Ln(CH2SiMe3)3(thf)2] generated the rare‐earth‐metal–dialkyl complexes, [(η3‐C13H8‐C5H4N)Ln(CH2SiMe3)2(thf)] (Ln=Y ( 4 a ), Sc ( 4 b ), Lu ( 4 c )), in which an unusual asymmetric η3‐allyl bonding mode of Flu moiety was observed. Switching to the bidentate yttrium–trisalkyl complex [Y(CH2C6H4o‐NMe2)3], the same reaction conditions afforded the corresponding yttrium bis(aminobenzyl) complex [(η3‐C13H8‐C5H4N)Y(CH2C6H4o‐NMe2)2] ( 5 ). Complexes 1 – 5 were fully characterized by 1H and 13C NMR and X‐ray spectroscopy, and by elemental analysis. In the presence of both [Ph3C][B(C6F5)4] and AliBu3, the electron‐donating aminophenyl‐Cp‐based complexes 1 and 2 did not show any activity towards styrene polymerization. In striking contrast, upon activation with [Ph3C][B(C6F5)4] only, the electron‐withdrawing pyridyl‐Cp‐based complexes 3 , in particular scandium complex 3 b , exhibited outstanding activitiy to give perfectly syndiotactic (rrrr >99 %) polystyrene, whereas their bulky pyridyl‐Flu analogues ( 4 and 5 ) in combination with [Ph3C][B(C6F5)4] and AliBu3 displayed much‐lower activity to afford syndiotactic‐enriched polystyrene.  相似文献   

15.
The half‐open rare‐earth‐metal aluminabenzene complexes [(1‐Me‐3,5‐tBu2‐C5H3Al)(μ‐Me)Ln(2,4‐dtbp)] (Ln=Y, Lu) are accessible via a salt metathesis reaction employing Ln(AlMe4)3 and K(2,4‐dtbp). Treatment of the yttrium complex with B(C6F5)3 and tBuCCH gives access to the pentafluorophenylalane complex [{1‐(C6F5)‐3,5‐tBu2‐C5H3Al}{μ‐C6F5}Y{2,4‐dtbp}] and the mixed vinyl acetylide complex [(2,4‐dtbp)Y(μ‐η13‐2,4‐tBu2‐C5H4)(μ‐CCtBu)AlMe2], respectively.  相似文献   

16.
Hitherto unknown 2,4,6-tris(trifluoromethyl)benzyl alcohol ( 3 ) was synthesized in 41 % yield by treatment of freshly prepared RFLi ( 2 ) with paraformaldehyde (RF = 2,4,6-tris(trifluoromethyl)phenyl). According to an X-ray diffraction study the crystal structure of 3 consists of S6 symmetric cyclic hexamers [2,4,6-(CF3)3C6H2CH2OH]6. Deprotonation of 3 with NaN(SiMe3)2 in toluene afforded the unsolvated sodium alkoxide derivative RFCH2ONa ( 4 ). Homoleptic lanthanide alkoxides of the type Ln(OCH2RF)3 (Ln = Nd ( 5 ), Sm ( 6 ), Yb ( 7 )) were made by treatment of Ln(C5H5)3 with three equivalents of 3 . Similar reactions in a 1:1 molar ratio afforded the bis(cyclopentadienyl)lanthanide alkoxide derivatives (C5H5)2Ln(OCH2RF) (Ln = Nd ( 8 ), Sm ( 9 ), Yb ( 10 )).  相似文献   

17.
Reaction of Ndcl3 with AlCl3 and mesitylene in benzene gives complex [Nd(η6‐1, 3, 5‐C6H3Me3)‐(AlCl4)3](C6H6) (1) which was characterized by elemental analysis, IR spectra, MS and X‐ray diffractions. The X‐ray determination indicates that 1 has a distorted pentagonal bipyramidal geometry and crystallizes in the monoclinic, space group P21/n with a = 0.9586(2), b = 1.1717(5), c = 2.8966(7) nm, β = 90.85 (2)°, V = 3.2529 (6) nm3,Dc= 1.573 g/cm3, Z = 4. A comparison of bond parameters for all the reported Ln (η6‐Ar) (AlCl4)3 complexes indicates that the bond distance of La? C is shortened with the increasing of methyl group on benzene and with the decreasing of radius of lanthanide ions.  相似文献   

18.
Cyclopentadienyl cobalt complexes (η5‐C5H4R) CoLI2 [L = CO,R=‐COOCH2CH=CH2 (3); L=PPh3, R=‐COOCH2‐CH=CH2 (6); L=P(p‐C6H4O3)3, R = ‐COOC(CH3) = CH2 (7), ‐COOCH2C6H5 (8), ‐COOCH2CH = CH2 (9)] were prepared and characterized by elemental analyses, 1H NMR, ER and UV‐vis spectra. The reaction of complexes (η5‐C5H4R)CoLI2 [L= CO, R= ‐COOC(CH3) = CH2 (1), ‐COOCH2C6H5(2); L=PPh3, R=‐COOC (CH3) = CH2 (4), ‐COOCH2C6H5 (5)] with Na‐Hg resulted in the formation of their corresponding substituted cobaltocene (η5‐C5H4R)2 Co[R=‐COOC(CH3) = CH2 (10), ‐COOCH2C6H5 (11)]. The electrochemical properties of these complexes 1–11 were studied by cyclic voltammetry. It was found that as the ligand (L) of the cobalt (III) complexes changing from CO to PPh3 and P(p‐tolyl)3, their oxidation potentials increased gradually. The cyclic voltammetry of α,α′‐substituted cobaltocene showed reversible oxidation of one electron process.  相似文献   

19.
Homoleptic tetramethylaluminate complexes [Ln(AlMe4)3] (Ln=La, Nd, Y) reacted with HCpNMe2 (CpNMe2=1‐[2‐(N,N‐dimethylamino)‐ethyl]‐2,3,4,5‐tetramethyl‐cyclopentadienyl) in pentane at ?35 °C to yield half‐sandwich rare‐earth‐metal complexes, [{C5Me4CH2CH2NMe2(AlMe3)}Ln(AlMe4)2]. Removal of the N‐donor‐coordinated trimethylaluminum group through donor displacement by using an equimolar amount of Et2O at ambient temperature only generated the methylene‐bridged complexes [{C5Me4CH2CH2NMe(μ‐CH2)AlMe3}Ln(AlMe4)] with the larger rare‐earth‐metal ions lanthanum and neodymium. X‐ray diffraction analysis revealed the formation of isostructural complexes and the C? H bond activation of one aminomethyl group. The formation of Ln(μ‐CH2)Al moieties was further corroborated by 13C and 1H‐13C HSQC NMR spectroscopy. In the case of the largest metal center, lanthanum, this C? H bond activation could be suppressed at ?35 °C, thereby leading to the isolation of [(CpNMe2)La(AlMe4)2], which contains an intramolecularly coordinated amino group. The protonolysis reaction of [Ln(AlMe4)3] (Ln=La, Nd) with the anilinyl‐substituted cyclopentadiene HCpAMe2 (CpAMe2=1‐[1‐(N,N‐dimethylanilinyl)]‐2,3,4,5‐tetramethylcyclopentadienyl) at ?35 °C generated the half‐sandwich complexes [(CpAMe2)Ln(AlMe4)2]. Heating these complexes at 75 °C resulted in the C? H bond activation of one of the anilinium methyl groups and the formation of [{C5Me4C6H4NMe(μ‐CH2)AlMe3}Ln(AlMe4)] through the elimination of methane. In contrast, the smaller yttrium metal center already gave the aminomethyl‐activated complex at ?35 °C, which is isostructural to those of lanthanum and neodymium. The performance of complexes [{C5Me4CH2CH2NMe(μ‐CH2)AlMe3}‐ Ln(AlMe4)], [(CpAMe2)Ln(AlMe4)2], and [{C5Me4C6H4NMe(μ‐CH2)AlMe3}Ln(AlMe4)] in the polymerization of isoprene was investigated upon activation with [Ph3C][B(C6F5)4], [PhNMe2H][B(C6F5)4], and B(C6F5)3. The highest stereoselectivities were observed with the lanthanum‐based pre‐catalysts, thereby producing polyisoprene with trans‐1,4 contents of up to 95.6 %. Narrow molecular‐weight distributions (Mw/Mn<1.1) and complete consumption of the monomer suggested a living‐polymerization mechanism.  相似文献   

20.
Reaction of LnCl3(thf) x (Ln = Y, La, Yb, Lu) with NaCpPhn (CpPhn = 1,3-Ph2C5H3, 1,2,4-Ph3C5H2, Ph4C5H) leads to formation of monocyclopentadienyl dichloride complexes Yb(Ph2C5H3)Cl2(thf)3 (1), Ln(Ph3C5H2)Cl2(thf)3 (Ln = Y (2), Lu (3)), La(Ph4C5H)Cl2(thf)3 (4). Molecular structures of 1, 2 and the polynuclear complex [(Ph3C5H2)3Lu4(Cl)7(O)(thf)3] (5), which is a partial hydrolysis product of 3, have been established by the X-ray method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号