首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the Markov chain ${\{X_n^x\}_{n=0}^\infty}$ on ${\mathbb{R}^d}$ defined by the stochastic recursion ${X_{n}^{x}= \psi_{\theta_{n}} (X_{n-1}^{x})}$ , starting at ${x\in\mathbb{R}^d}$ , where ?? 1, ?? 2, . . . are i.i.d. random variables taking their values in a metric space ${(\Theta, \mathfrak{r})}$ , and ${\psi_{\theta_{n}} :\mathbb{R}^d\mapsto\mathbb{R}^d}$ are Lipschitz maps. Assume that the Markov chain has a unique stationary measure ??. Under appropriate assumptions on ${\psi_{\theta_n}}$ , we will show that the measure ?? has a heavy tail with the exponent ???>?0 i.e. ${\nu(\{x\in\mathbb{R}^d: |x| > t\})\asymp t^{-\alpha}}$ . Using this result we show that properly normalized Birkhoff sums ${S_n^x=\sum_{k=1}^n X_k^x}$ , converge in law to an ??-stable law for ${\alpha\in(0, 2]}$ .  相似文献   

2.
For ?? > 0, the Banach space ${\mathcal{F}_{\alpha}}$ is defined as the collection of functions f which can be represented as integral transforms of an appropriate kernel against a Borel measure defined on the unit circle T. Let ?? be an analytic self-map of the unit disc D. The map ?? induces a composition operator on ${\mathcal{F}_{\alpha}}$ if ${C_{\Phi}(f) = f \circ \Phi \in \mathcal{F}_{\alpha}}$ for any function ${f \in \mathcal{F}_{\alpha}}$ . Various conditions on ?? are given, sufficient to imply that C ?? is bounded on ${\mathcal{F}_{\alpha}}$ , in the case 0 < ?? < 1. Several of the conditions involve ???? and the theory of multipliers of the space ${\mathcal{F}_{\alpha}}$ . Relations are found between the behavior of C ?? and the membership of ?? in the Dirichlet spaces. Conditions given in terms of the generalized Nevanlinna counting function are shown to imply that ?? induces a bounded composition operator on ${\mathcal{F}_{\alpha}}$ , in the case 1/2 ?? ?? < 1. For such ??, examples are constructed such that ${\| \Phi \|_{\infty} = 1}$ and ${C_{\Phi}: \mathcal{F}_{\alpha} \rightarrow \mathcal{F}_{\alpha}}$ is bounded.  相似文献   

3.
We prove a Godbillon?CVey index formula for longitudinal Dirac operators on a foliated bundle with boundary ${(X,\mathcal{F})}$ ; in particular, we define a Godbillon?CVey eta invariant on ${(\partial X,\mathcal{F}_{\partial}),}$ that is, a secondary invariant for longitudinal Dirac operators on type III foliations. Moreover, employing the Godbillon?CVey index as a pivotal example, we explain a new approach to higher index theory on geometric structures with boundary. This is heavily based on the interplay between the absolute and relative pairings of K-theory and cyclic cohomology for an exact sequence of Banach algebras, which in the present context takes the form ${0 \to \mathbf{\mathfrak{J}} \to \mathbf{\mathfrak{A}} \to \mathbf{\mathfrak{B}} \to 0}$ with ${ \mathbf{\mathfrak{J}}}$ dense and holomorphically closed in ${C^* (X,\mathcal{F})}$ and ${ \mathbf{\mathfrak{B}}}$ depending only on boundary data. Of particular importance is the definition of a relative cyclic cocycle ${(\tau_{GV}^r,\sigma_{GV})}$ for the pair ${\mathbf{\mathfrak{A}} \to \mathbf{\mathfrak{B}}}$ ; ${\tau_{GV}^r}$ is a cyclic cochain on ${\mathbf{\mathfrak{A}}}$ defined through a regularization à la Melrose of the usual Godbillon?CVey cyclic cocycle ?? GV ; ?? GV is a cyclic cocycle on ${\mathbf{\mathfrak{B}}}$ , obtained through a suspension procedure involving ?? GV and a specific 1-cyclic cocycle (Roe??s 1-cocycle). We call ?? GV the eta cocycle associated to ?? GV . The Atiyah?CPatodi?CSinger formula is obtained by defining a relative index class ${{\rm Ind} (D,D^\partial) \in K_* (\mathbf{\mathfrak{A}}, \mathbf{\mathfrak{B}})}$ and establishing the equality ${\langle {\rm Ind} (D), [\tau_{GV}] \rangle\,=\,\langle {\rm Ind} (D,D^\partial), [(\tau^r_{GV}, \sigma_{GV})] \rangle}$ . The Godbillon?CVey eta invariant ?? GV is obtained through the eta cocycle ?? GV .  相似文献   

4.
For real ${L_\infty(\mathbb{R})}$ -functions ${\Phi}$ and ${\Psi}$ of compact support, we prove the norm resolvent convergence, as ${\varepsilon}$ and ${\nu}$ tend to 0, of a family ${S_{\varepsilon \nu}}$ of one-dimensional Schrödinger operators on the line of the form $$S_{\varepsilon \nu} = -\frac{d^2}{dx^2} + \frac{\alpha}{\varepsilon^2} \Phi \left( \frac{x}{\varepsilon} \right) + \frac{\beta}{\nu} \Psi \left(\frac{x}{\nu} \right),$$ provided the ratio ${\nu/\varepsilon}$ has a finite or infinite limit. The limit operator S 0 depends on the shape of ${\Phi}$ and ${\Psi}$ as well as on the limit of ratio ${\nu/\varepsilon}$ . If the potential ${\alpha\Phi}$ possesses a zero-energy resonance, then S 0 describes a non trivial point interaction at the origin. Otherwise S 0 is the direct sum of the Dirichlet half-line Schrödinger operators.  相似文献   

5.
Let??? be a self-similar measure on ${\mathbb{R}^d}$ associated with a family of contractive similitudes {S 1, . . . , S N } and a probability vector {p 1, . . . , p N }. Let ${(\alpha_n)_{n=1}^\infty}$ be a sequence of n-optimal sets for??? of order r. For each n, we denote by ${\{P_a(\alpha_n) : a \in \alpha_n\}}$ a Voronoi partition of ${\mathbb{R}^d}$ with respect to ?? n . Under the strong separation condition for {S 1, . . . , S N }, we show that the nth quantization error of??? of order ${r \in [1, \infty)}$ satisfies the following asymptotic uniformity property: $$\int \limits _{P_a(\alpha_n)}{\rm d}(x, a)^rd\mu(x) \asymp \frac{1}{n}V_{n,r}(\mu),\quad {\rm for\,all}\,a \in \alpha_n.$$   相似文献   

6.
7.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

8.
Let ${\mathbf{T}=\{T(t)\} _{t\in\mathbb{R}}}$ be a ??(X, F)-continuous group of isometries on a Banach space X with generator A, where ??(X, F) is an appropriate local convex topology on X induced by functionals from ${ F\subset X^{\ast}}$ . Let ?? A (x) be the local spectrum of A at ${x\in X}$ and ${r_{A}(x):=\sup\{\vert\lambda\vert :\lambda \in \sigma_{A}(x)\},}$ the local spectral radius of A at x. It is shown that for every ${x\in X}$ and ${\tau\in\mathbb{R},}$ $$\left\Vert T(\tau) x-x\right\Vert \leq \left\vert \tau \right\vert r_{A}(x)\left\Vert x\right\Vert.$$ Moreover if ${0\leq \tau r_{A}(x)\leq \frac{\pi}{2},}$ then it holds that $$\left\Vert T(\tau) x-T(-\tau)x\right\Vert \leq 2\sin \left(\tau r_{A}(x)\right)\left\Vert x\right\Vert.$$ Asymptotic versions of these results for C 0-semigroup of contractions are also obtained. If ${\mathbf{T}=\{T(t)\}_{t\geq 0}}$ is a C 0-semigroup of contractions, then for every ${x\in X}$ and ????? 0, $$\underset{t\rightarrow \infty }{\lim } \left\Vert T( t+\tau) x-T(t) x\right\Vert\leq\tau\sup\left\{ \left\vert \lambda \right\vert :\lambda \in\sigma_{A}(x)\cap i \mathbb{R} \right\} \left\Vert x\right\Vert. $$ Several applications are given.  相似文献   

9.
Let ${\mathcal{B}_{p,w}}$ be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space ${L^{p}(\mathbb{R}, w)}$ , where ${p \in (1, \infty)}$ and w is a Muckenhoupt weight. We study the Banach subalgebra ${\mathfrak{A}_{p,w}}$ of ${\mathcal{B}_{p,w}}$ generated by all multiplication operators aI ( ${a \in PSO^{\diamond}}$ ) and all convolution operators W 0(b) ( ${b \in PSO_{p,w}^{\diamond}}$ ), where ${PSO^{\diamond} \subset L^{\infty}(\mathbb{R})}$ and ${PSO_{p,w}^{\diamond} \subset M_{p,w}}$ are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of ${\mathbb{R} \cup \{\infty\}}$ , and M p,w is the Banach algebra of Fourier multipliers on ${L^{p}(\mathbb{R}, w)}$ . Under some conditions on the Muckenhoupt weight w, we construct a Fredholm symbol calculus for the Banach algebra ${\mathfrak{A}_{p,w}}$ and establish a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ in terms of their Fredholm symbols. To study the Banach algebra ${\mathfrak{A}_{p,w}}$ we apply the theory of Mellin pseudodifferential operators, the Allan–Douglas local principle, the two idempotents theorem and the method of limit operators. The paper is divided in two parts. The first part deals with the local study of ${\mathfrak{A}_{p,w}}$ and necessary tools for studying local algebras.  相似文献   

10.
We initiate a new line of investigation on branching problems for generalized Verma modules with respect to reductive symmetric pairs $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ . In general, Verma modules may not contain any simple module when restricted to a reductive subalgebra. In this article we give a necessary and sufficient condition on the triple $ \left( {\mathfrak{g},\mathfrak{g}',\mathfrak{p}} \right) $ such that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ always contains simple $ \mathfrak{g}' $ -modules for any $ \mathfrak{g} $ -module X lying in the parabolic BGG category $ {\mathcal{O}^\mathfrak{p}} $ attached to a parabolic subalgebra $ \mathfrak{p} $ of $ \mathfrak{g} $ . Formulas are derived for the Gelfand?CKirillov dimension of any simple module occurring in a simple generalized Verma module. We then prove that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ is generically multiplicity-free for any $ \mathfrak{p} $ and any $ X \in {\mathcal{O}^\mathfrak{p}} $ if and only if $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ is isomorphic to (A n , A n-1), (B n , D n ), or (D n+1, B n ). Explicit branching laws are also presented.  相似文献   

11.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

12.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

13.
Let ${\mathcal{B}_{p,w}}$ be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space ${L^p(\mathbb{R},w)}$ , where ${p\in(1,\infty)}$ and w is a Muckenhoupt weight. We study the Banach subalgebra ${\mathfrak{U}_{p,w}}$ of ${\mathcal{B}_{p,w}}$ generated by all multiplication operators aI ( ${a\in PSO^\diamond}$ ) and all convolution operators W 0(b) ( ${b\in PSO_{p,w}^\diamond}$ ), where ${PSO^\diamond\subset L^\infty(\mathbb{R})}$ and ${PSO_{p,w}^\diamond\subset M_{p,w}}$ are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of ${\mathbb{R}\cup\{\infty\}}$ , and M p,w is the Banach algebra of Fourier multipliers on ${L^p(\mathbb{R},w)}$ . Under some conditions on the Muckenhoupt weight w, using results of the local study of ${\mathfrak{U}_{p,w}}$ obtained in the first part of the paper and applying the theory of Mellin pseudodifferential operators and the two idempotents theorem, we now construct a Fredholm symbol calculus for the Banach algebra ${\mathfrak{U}_{p,w}}$ and establish a Fredholm criterion for the operators ${A\in\mathfrak{U}_{p,w}}$ in terms of their Fredholm symbols. In four partial cases we obtain for ${\mathfrak{U}_{p,w}}$ more effective results.  相似文献   

14.
Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson?CHunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in ${L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ and ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ on the weighted Lebesgue spaces ${L^p(\mathbb{R},w)}$ , with 1?< p <? ?? and ${w\in A_p(\mathbb{R})}$ . The Banach algebras ${L^\infty(\mathbb{R}, V(\mathbb{R}))}$ and ${PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ consist, respectively, of all bounded measurable or piecewise continuous ${V(\mathbb{R})}$ -valued functions on ${\mathbb{R}}$ where ${V(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded total variation, and the Banach algebra ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ consists of all Lipschitz ${V_d(\mathbb{R})}$ -valued functions of exponent ${\gamma \in (0,1]}$ on ${\mathbb{R}}$ where ${V_d(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded variation on dyadic shells. Finally, for the Banach algebra ${\mathfrak{A}_{p,w}}$ generated by all pseudodifferential operators a(x, D) with symbols ${a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ on the space ${L^p(\mathbb{R}, w)}$ , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ .  相似文献   

15.
Let A be an expansive dilation on ${{\mathbb R}^n}$ and w a Muckenhoupt ${\mathcal A_\infty(A)}$ weight. In this paper, for all parameters ${\alpha\in{\mathbb R} }$ and ${p,q\in(0,\infty)}$ , the authors identify the dual spaces of weighted anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A;w)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A;w)}$ with some new weighted Besov-type and Triebel?CLizorkin-type spaces. The corresponding results on anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A; \mu)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A; \mu)}$ associated with ${\rho_A}$ -doubling measure??? are also established. All results are new even for the classical weighted Besov and Triebel?CLizorkin spaces in the isotropic setting. In particular, the authors also obtain the ${\varphi}$ -transform characterization of the dual spaces of the classical weighted Hardy spaces on ${{\mathbb R}^n}$ .  相似文献   

16.
We generalize the well-known Lax-Milgram theorem on the Hilbert space to that on the Banach space. Suppose that ${a(\cdot, \cdot)}$ is a continuous bilinear form on the product ${X\times Y}$ of Banach spaces X and Y, where Y is reflexive. If null spaces N X and N Y associated with ${a(\cdot, \cdot)}$ have complements in X and in Y, respectively, and if ${a(\cdot, \cdot)}$ satisfies certain variational inequalities both in X and in Y, then for every ${F \in N_Y^{\perp}}$ , i.e., ${F \in Y^{\ast}}$ with ${F(\phi) = 0}$ for all ${\phi \in N_Y}$ , there exists at least one ${u \in X}$ such that ${a(u, \varphi) = F(\varphi)}$ holds for all ${\varphi \in Y}$ with ${\|u\|_X \le C\|F\|_{Y^{\ast}}}$ . We apply our result to several existence theorems of L r -solutions to the elliptic system of boundary value problems appearing in the fluid mechanics.  相似文献   

17.
Let G be a commutative group, written additively, with a neutral element 0, and let K be a finite group. Suppose that K acts on G via group automorphisms ${G \ni a \mapsto ka \in G}$ , ${k \in K}$ . Let ${{\mathfrak{H}}}$ be a complex Hilbert space and let ${{\mathcal L}({\mathfrak{H}})}$ be the algebra of all bounded linear operators on ${{\mathfrak{H}}}$ . A mapping ${u \colon G \to {\mathcal L}({\mathfrak{H}})}$ is termed a K-spherical function if it satisfies (1) ${|K|^{-1} \sum_{k\in K} u (a+kb)=u (a) u (b)}$ for any ${a,b\in G}$ , where |K| denotes the cardinality of K, and (2) ${u (0) = {\rm id}_{\mathfrak {H}},}$ where ${{\rm id}_{\mathfrak {H}}}$ designates the identity operator on ${{\mathfrak{H}}}$ . The main result of the paper is that for each K-spherical function ${u \colon G \to {\mathcal {L}}({\mathfrak {H}})}$ such that ${\| u \|_{\infty} = \sup_{a\in G} \| u (a)\|_{{\mathcal L}({\mathfrak{H}})} < \infty,}$ there is an invertible operator S in ${{\mathcal L}({\mathfrak{H}})}$ with ${\| S \| \, \| S^{-1}\| \leq |K| \, \| u \|_{\infty}^2}$ such that the K-spherical function ${{\tilde{u}} \colon G \to {\mathcal L}({\mathfrak{H}})}$ defined by ${{\tilde{u}}(a) = S u (a) S^{-1},\,a \in G,}$ satisfies ${{\tilde{u}}(-a) = {\tilde{u}}(a)^*}$ for each ${a \in G}$ . It is shown that this last condition is equivalent to insisting that ${{\tilde{u}}(a)}$ be normal for each ${a \in G}$ .  相似文献   

18.
Let ?? be a bounded domain in ${\mathbb{R}^{n}, n\geq2}$ . We use ${\mathcal{M}_{\Omega}}$ to denote the collection of all pairs of (A, u) such that ${A\subset\Omega}$ is a set of finite perimeter and ${u\in H^{1}\left( \Omega\right)}$ satisfies $$u\left( x\right) =0\quad\text{a.e.}x\in A.$$ We consider the energy functional $$E_{\Omega}\left( A,u\right) =\int\limits_{\Omega}\left\vert\triangledown u\right\vert ^{2}+P_{\Omega}\left( A\right)$$ defined on ${\mathcal{M}_{\Omega}}$ , where P ??(A) denotes the perimeter of A inside ??. Let ${\left( A,u\right)\in\mathcal{M}_{\Omega}}$ be a minimizer with volume constraint. Our main result is that when n????7, u is locally Lipschitz and the free boundary ?A is analytic in ??.  相似文献   

19.
Let K be a commutative field, ${A\subseteq K}$ be a Dedekind ring and V be a K-vector space. For any pair of A-lattices R????0 and S of V, we define an A-submodule ${\left[R : S\right]^{\prime}_{A}}$ of K, their A-index-module. Once the basic properties of these modules are stated, we show that this notion can be used to recover more usual ones: the group-index, the relative invariant, the Fitting ideal of R/S when ${S\subseteq R}$ , and the generalized index of Sinnott. As an example, we consider the following situation. Let F/k be a finite abelian extension of global function fields, with Galois group G, and degree g. Let ?? be a place of k which splits completely in F/k. Let ${{\mathcal O}_{F}}$ be the ring of functions of F, which are regular outside the places of F sitting over ??. Then one may use Stark units to define a subgroup ${\mathcal E_F}$ of ${{\mathcal O}_{F}^{\times}}$ , the group of units of ${\mathcal O_F}$ . We use the notion of index-module to prove that for every nontrivial irreducible rational character ?? of G, the ??-part of ${\mathbb Z\left[g^{-1}\right]\otimes_\mathbb Z\left(\mathcal O_F^\times/\mathcal E_F\right)}$ and the ??-part of ${\mathbb Z\left[g^{-1}\right]\otimes_\mathbb ZCl(\mathcal O_F)}$ have the same order.  相似文献   

20.
We consider a variant of the Cops and Robber game, in which the robber has unbounded speed, i.e., can take any path from her vertex in her turn, but she is not allowed to pass through a vertex occupied by a cop. Let ${c_{\infty}(G)}$ denote the number of cops needed to capture the robber in a graph G in this variant. We characterize graphs G with c ??(G) =? 1, and give an ${O( \mid V(G)\mid^2)}$ algorithm for their detection. We prove a lower bound for c ?? of expander graphs, and use it to prove three things. The first is that if ${np \geq 4.2 {\rm log}n}$ then the random graph ${G= \mathcal{G}(n, p)}$ asymptotically almost surely has ${\eta_{1}/p \leq \eta_{2}{\rm log}(np)/p}$ , for suitable positive constants ${\eta_{1}}$ and ${\eta_{2}}$ . The second is that a fixed-degree random regular graph G with n vertices asymptotically almost surely has ${c_{\infty}(G) = \Theta(n)}$ . The third is that if G is a Cartesian product of m paths, then ${n/4km^2 \leq c_{\infty}(G) \leq n/k}$ , where ${n = \mid V(G)\mid}$ and k is the number of vertices of the longest path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号