首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Von Kármán was the first to present a quantitative model of the “vortex street” wake as a double row of point vortices, to determine which configurations propagate in the direction of the rows, and to consider the linear stability theory for such states. In the early literature one works with infinite rows of vortices. The vortex street is assumed to continue to infinity both upstream and downstream. Another analytical approach is to use periodic boundary conditions in the direction of the wake. This representation was used by Domm in his analysis of the instability of the Kármán vortex street. Birkhoff and Fisher in 1959 were the first to treat vortices in a periodic strip as a dynamical system in its own right. We have used the periodic system to address problems of vortex wake patterns, in particular vortex wakes that are more complicated than the traditional two-vortices-per-strip configurations. We use the term “exotic” for such wakes. We submit that this approach can yield a number of insights, including results of direct relevance to experiments, in the same sense that von Kármán's analysis has been helpful to the understanding of the regular vortex street wake, and we present the results obtained to date following this program.  相似文献   

2.
This paper provides a conceptual analysis and a computational model for how the unsteady ‘buffeting’ phenomenon develops in transonic, low incidence flow around a supercritical aerofoil, the OAT15A, at Reynolds number of 3.3 million. It is shown how a low-frequency buffet mode is amplified in the shock-wave region and then develops upstream and downstream interaction with the alternating von Kármán eddies in the wake past the trailing-edge as well as with the shear-layer, Kelvin–Helmholtz vortices. These interactions are tracked by wavelet analysis, autoregressive (AR) modelling and by Proper Orthogonal Decomposition. The frequency modulation of the trailing-edge instability modes is shown in the spectra and in the wall-pressure fluctuations. The amplitude modulation of the buffet and von Kármán modes has been also quantified by POD analysis. The thinning of the shear layers, both at the outer edge of the turbulent boundary layers and the wake, caused by an ‘eddy-blocking’ mechanism is modelled by stochastic forcing of the turbulent kinetic energy and dissipation, by small-scale straining of the higher-order POD modes. The benefits from thinning the shear-layers by taking into account the interfacial dynamics are clearly shown in the velocity profiles, and wall pressure distribution in comparison with the experimental data.  相似文献   

3.
In this work, we present an experimental study of the wall confinement effect on the wake formation behind a circular cylinder of diameter dc=10 mm and of length Lc=30dc. The experiments were performed in a water tunnel with the dimensions (length=300dc, height=3dc, span Lc=30dc). The confinement rate was r=1/3 and the Reynolds number was in the range of 30–277. The experiments were done using 2-D PIV measurements. The first instability was delayed by the confinement and the von Kármán vortices characteristics are different from the unconfined case. Proper orthogonal decomposition (POD) of the flow was used for a filtering purpose and to extract the energetic contribution of the different modes. A low-order representation of the flow, constructed from the first pair of modes in the well-defined region of the flow, shows that von Kármán vortices are equivalent to vanishing progressive waves. Measurements done above the cylinder show the presence of 3-D span instabilities showing great similarities with “Mode A” and “Mode B” found in the unconfined case.  相似文献   

4.
5.
The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at \(Re=100\), considering two factors, viz. the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects. In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III, the typical Kármán vortices partially or totally disappear, and some new vortex shedding patterns appear, such as \(\Omega \)-type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.  相似文献   

6.
By means of a variational approach we rigorously deduce three one-dimensional models for elastic ribbons from the theory of von Kármán plates, passing to the limit as the width of the plate goes to zero. The one-dimensional model found starting from the “linearized” von Kármán energy corresponds to that of a linearly elastic beam that can twist but can deform in just one plane; while the model found from the von Kármán energy is a non-linear model that comprises stretching, bendings, and twisting. The “constrained” von Kármán energy, instead, leads to a new Sadowsky type of model.  相似文献   

7.
The physical mechanism for generation of streamwise vortices (or rib vortices) in the cylinder wake is numerically investigated with a finite-difference scheme. Rayleigh's theory of centrifugal instability for inviscid axisymmetric flow is extended to analyze the 2-D primary flows. Accordingly, an analytical dimensionless groupRay=−(r/v θ)∂v θ/∂r−1 is derived, wherev θ represents the velocity of a fluid element relative to the oncoming flow,r is the local curvature radius of the element pathline. Centrifugal instability occurs whenRay>0. Stability analyses are carried out with this discriminant for primary flows at different time levels in a half shedding period of the von Kármán (or vK) vortices. Unstable areas are identified and the locations of rib vortices are coincident well with the unstable areas within the first wavelength of vK vortices behind the cylinder. The numerical results also show that rib vortices experience amplification in this region. It is apparent that centrifugal instability plays an important role in the generation of rib vortices in the cylinder wake. The project spported by the National Natural Science Foundation of China  相似文献   

8.
Measurements were made in the stern boundary layers and near wakes of an elliptic cylinder and a slender ship model. Turbulence intensities, Reynolds stresses, kinematic eddy viscosities and mixing lengths are presented. For the elliptic cylinder, furthermore, auto-correlation and power spectrum are obtained. It is shown that the separation from the cylinder increases the turbulence intensities, and the Kármán vortices enhance the turbulence power at the vortex frequency. All distributions of Reynolds stresses in the thick boundary layer and wake of the ship model show a secondary low peak at about half the thickness.  相似文献   

9.
The wake of a surface-mounted finite-height circular cylinder and the associated vortex patterns are strongly dependent on the cylinder aspect ratio and the thickness of the boundary layer on the ground plane relative to the dimensions of the cylinder. Above a critical aspect ratio, the mean wake is characterized by streamwise tip vortex structures and Kármán vortex shedding from the sides of the cylinder. Below a critical aspect ratio, a unique mean wake structure is observed. Recent experimental studies in the literature that used phase-averaged techniques, as well as recent numerical simulations, have led to an improved physical understanding of the near-wake vortex flow patterns. However, the flow above the free end of the finite circular cylinder, and its relationship to the near wake, has not been systematically studied. The effects of aspect ratio and boundary layer thickness on the free-end flow field are also not completely understood, nor has the influence of Reynolds number on the free-end flow field been fully explored. Common features associated with the free end include separation from the leading edge, a mean recirculation zone containing a prominent cross-stream arch (or mushroom) vortex, and reattachment onto the free-surface. Other flow features that remain to be clarified include a separation bubble near the leading edge, one or two cross-stream vortices within this separation bubble, the origins of the streamwise tip or trailing vortices, and various critical points in the near-surface flow topology. This paper reviews the current understanding of the flow above the free end of a surface-mounted finite-height circular cylinder, with a focus on models of the flow field, surface oil flow visualization studies, pressure and heat flux distributions on the free-end surface, measurements of the local velocity field, and numerical simulations, found in the literature.  相似文献   

10.
The existence of buckled states on a perforated thin plate   总被引:1,自引:1,他引:0  
On the basis of the generalized yon Kàrmàn theory for perforated thin plates established in [1, 2], the existence of buckled states for perforated plates subjected to self-equilibrating inplane forces along each edge systematically is investigated. This work completely generalizes the results in [3, 4].  相似文献   

11.
This paper describes a direct numerical simulation (DNS) study of turbulent flow over a rectangular trailing edge at a Reynolds number of 1000, based on the freestream quantities and the trailing edge thickness h; the incoming boundary layer displacement thickness δ* is approximately equal to h. The time-dependent inflow boundary condition is provided by a separate turbulent boundary layer simulation which is in good agreement with existing computational and experimental data. The turbulent trailing edge flow simulation is carried out using a parallel multi-block code based on finite difference methods and using a multi-grid Poisson solver. The turbulent flow in the near-wake region of the trailing edge has been studied first for the effects of domain size and grid resolution. Then two simulations with a total of 256 × 512 × 64 (∼ 8.4×106) and 512 × 1024 × 128 (∼ 6.7×107) grid points in the computational domain are carried out to investigate the key flow features. Visualization of the instantaneous flow field is used to investigate the complex fluid dynamics taking place in the near-wake region; of particular importance is the interaction between the large-scale spanwise, or Kármán, vortices and the small-scale quasi-streamwise vortices contained within the inflow boundary layer. Comparisons of turbulence statistics including the mean flow quantities are presented, as well as the pressure distributions over the trailing edge. A spectral analysis applied to the force coefficient in the wall normal direction shows that the main shedding frequency is characterized by a Strouhal number based on h of approximately 0.118. Finally, the turbulence kinetic energy budget is analysed. Received 4 March 1999 and accepted 27 October 2000  相似文献   

12.
Unsteady Reynolds-averaged Navier–Stokes (URANS) simulations and detached-eddy simulations (DES) were performed of flow around a circular cylinder placed near and parallel to a moving ground, on which substantially no boundary layer developed to interfere with the cylinder. The results were compared with experiments previously reported by the authors to examine how accurately the URANS and DES can predict the cessation of von Kármán-type vortex shedding and the attendant critical drag reduction of the cylinder in ground effect. The DES, which were performed in a three-dimensional domain with spanwise periodicity imposed, correctly captured the cessation of the vortex shedding, whereas both two- and three-dimensional URANS also predicted it but at a much smaller gap-to-diameter ratio compared with the experiments. The wake structures of the cylinder predicted by the DES were in good agreement with the experiments in both large- and small-gap regimes, and also in the intermediate-gap regime, where the DES captured the intermittence of the vortex shedding in the near-wake region. Based on the results obtained, further discussions are also given to the reason why the von Kármán-type vortices in the URANS solutions incorrectly ‘survived’ until the cylinder came much closer to the ground.  相似文献   

13.
The shedding process in the near wake of a surface-mounted, square cross-section cylinder of height-to-width aspect ratio 4 at a Reynolds number of 12,000 based on free-stream velocity and the obstacle width was investigated. The boundary layer thickness was 0.18 obstacle heights based on 99% free-stream velocity. The study is performed using planar high frame-rate particle image velocimetry synchronized with pressure measurements and hot-wire anemometry. Spatial cross-correlation, instantaneous phase relationships, and phase-averaged velocity data are reported. Two dominant vortex-shedding regimes are observed. During intervals of high-amplitude pressure fluctuations on the obstacle side faces, alternate formation and shedding of vortices is observed (regime A) similar to the von Kármán process. Regime B is characterized by two co-existing vortices in the obstacle lee throughout the shedding cycle and is observed within low-amplitude pressure fluctuation intervals. Despite the coexisting vortices in the base region, opposite sign vorticity is still shed out-of-phase downstream of this vortex pair giving rise to a staggered arrangement of counter-rotating vortices downstream. While the probability of occurrence of Regime B increases toward the free end, the amplitude modulation remains coherent along the obstacle height. Conditionally phase-averaged reconstructions of the flow field are consistent with the spatial distribution of the phase relationships and their probability density function. Earlier observations are reconciled showing that the symmetric shedding of vortices is a rare occurrence.  相似文献   

14.
Flow phenomena induced by a single spanwise wire on the surface of a circular cylinder are investigated via a cinema technique of particle image velocimetry (PIV). The primary aim of this investigation is to assess the effect of the wire scale. To this end, consideration is given to wires with different diameters that are 0.5, 1.2, and 2.9% of the cylinder diameter. The Reynolds number has a subcritical value of 10,000. Compared to the thickness of the unperturbed boundary layer developing around the cylinder between 5° and 75° from the forward stagnation point, the former two wires have smaller scales and the latter has a larger scale. Two angular locations of the wire, defined with respect to the forward stagnation point of the cylinder, are found to be critical. When the wire is located at these critical angles, either the most significant extension or the contraction of the time-mean separation bubble occurs in the near wake. These critical angles depend on the wire scale: the smaller the wire, the larger the critical angle. The small-scale and large-scale wires that have diameters of 1.2 and 2.9% of the cylinder diameter induce bistable shear-layer oscillations between different separation modes when placed at their respective critical angles corresponding to maximum extension of the near-wake bubble. These oscillations have irregular time intervals that are much longer than the time scale associated with the classical Kármán instability. Moreover, the large-scale wire can either significantly attenuate or intensify the Kármán mode of vortex shedding at the critical states; in contrast, the small-scale wires do not notably alter the strength of the Kármán instability.  相似文献   

15.
It is extremely difficult to obtain an exact solution of von Karman’s equations because the equations are nonlinear and coupled. So far many approximate methods have been used to solve the large deflection problems except that only a few exact solutions have been investigated but no strict proof on convergence is presented yet. In this paper, first of all, we reduce the von KÁrmÁn’s equations to equivalent integral equations which are nonlinear, coupled and singular. Secondly the sequences of continuous function with general form are constructed using iterative technique. Based on the sequences to be uniformly convergent, we obtain analytical formula of exact solutions to von Karman’s equations related to large deflection problems of circular plate and shallow spherical shell with clamped boundary subjected to a concentrated load at the centre.  相似文献   

16.
3-D evolution of Kármán vortex filaments and vortex filaments in braid regions in the turbulent wake of a 2-D circular cylinder is investigated numerically based on inviscid vortex dynamics by analyzing the response of the initially 2-D spanwise vortex filaments to periodic spanwise disturbance of varying magnitude, wavelength and initial phase angles. Our results reveal a kind of 3-D vortex system in the wake which consists of large scale horseshoe-shaped vortices and small scale γ-shaped vortex filaments as well as vortex loops. The mechanism and the dynamic process about the generation of streamwise vortical structure and the 3-D coherent structure are reported. currently published in the Chinese Edition of Acta Mechanica Sinica, Vol.25, No.3, 1993 The project supported by National Natural Science Foundation of China and the National Basic Research Project “Nonlinear Science”  相似文献   

17.
There have been differences in the literature concerning the power law relationship between the Bloor-Gerrard instability frequency of the separated shear layer from the circular cylinder, the Bénard-von Kármán vortex shedding frequency and the Reynolds number. Most previous experiments have shown a significant degree of scatter in the measurement of the development of the shear layer vortices. Shear layers are known to be sensitive to external influences, which can provide a by-pass transition to saturated growth, thereby camouflaging the fastest growing linear modes. Here, the spatial amplification rates of the shear layer instabilities are calculated using power-spectral density estimates, allowing the fastest growing modes rather than necessarily the largest structures to be determined. This method is found to be robust in determining the fastest growing modes, producing results consistent with the low scatter results of previous experiments.  相似文献   

18.
 Results of flow visualization, hot wire, and base pressure measurements were conducted for an investigation of the near wake of a circular cylinder at subcritical Reynolds numbers between 2700 to 46000. A base mounted splitter plate allowed for the modification of the formation region characteristics without disrupting the normal Kármán shedding. The results provide an explanation for the non-linearity in the relationship between shedding frequency and splitter plate length and extend the previous investigations of Roshko (1954), Gerrard (1966) and Apelt et al. (1973). In addition to the nominal 2-D configurations, a sinuous trailing edge splitter plate, cylinder taper, and shear flow were incorporated to study the effects of mild 3-dimensionality. A strong spanwise coherence was found to exist in the formation region. A superposition principle was discovered which showed that certain 3-D geometry and flow configurations could be combined to produce a nominal 2-D wake. Received: 26 June 1996 / Accepted: 7 January 1997  相似文献   

19.
Vortex shedding in the wake of two-dimensional bluff bodies is usually accompanied by three dimensional instabilities. These instabilities result in streamwise and vertical vorticity components which occur at a certain spanwise wavelength. The spanwise wavelength of the instabilities (λZ) depends on several parameters, including profile geometry and Reynolds number. The objective of the present work is to study the three dimensional wake instabilities for a blunt trailing edge profiled body, comprised of an elliptical leading edge and a rectangular trailing edge, and to manipulate these instabilities to control the aerodynamic forces. Results of numerical simulations of flow around the body at Re(d) = 400, 600, and 1000, as well as planar Laser Induced Fluorescence (LIF) flow visualizations at Re(d) = 600 and 1000 are analyzed to determine the wake vorticity structure and λZ. Based on the findings of these analyses, an active flow control mechanism for attenuation of the fluctuating aerodynamic forces on the body is proposed. The flow control mechanism is comprised of a series of trailing edge injection ports distributed across the span, with a spacing equal to λZ. Injection of a secondary flow leads to amplification of the three dimensional instabilities and disorganization of the von Kármán vortex street. Numerical simulations indicate that the flow control mechanism can attenuate the fluctuating aerodynamic forces at lower Reynolds numbers (Re(d) = 400 and 600) where λZ is constant in time. However, the control mechanism loses its effectiveness at Re(d) = 1000, due to the temporal variations of λZ.  相似文献   

20.
On the basis of Hamilton's principle and dynamic version of vonKàrmàn's equations,the nonlinear vibration and thermal-buckling of a uniformly heated isotropic annular plate with a completely clamped outer edge and a fixed rigid mass along the inner edge are studied. By parametric perturbation and numerical differentiation, the nonlinear response of the plate-mass system and the critical temperature in the mid-plane at which the plate is in buckled state are obtained. Some meaningful characteristic curves and data tables are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号