首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrated the growth profile of stimulated Raman anti‐Stokes scattering (SRS) of carbon disulfide (CS2) influenced by fluorescence seeding of all‐trans‐β‐carotene and rhodamine‐B (RhB) in liquid‐core optical fiber (LCOF). The pump energy which was needed to build up the first‐order anti‐Stokes radiation of CS2 solutions with the fluorescence seeding was lower than that of CS2 solutions without fluorescence seeding because of the fluorescence enhancement effect on the intensity of the first‐order Stokes radiation. The first‐order anti‐Stokes radiation of the RhB solution (10−8 M ) was built up at a lower pump energy than that of the all‐trans‐β‐carotene solution (10−6 M ), and the intensity of the first‐order anti‐Stokes radiation of the RhB solution was higher than that of the all‐trans‐β‐carotene solution. Simultaneously, the coupled wave differential equations were obtained by the theoretical derivation, and the growth profile of the first‐order anti‐Stokes radiation was theoretically calculated with and without the fluorescence seeding by these equations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The electronic (UV‐vis) and resonance Raman (RR) spectra of a series of para‐substituted trans‐β‐nitrostyrenes were investigated to determine the influence of the electron donating properties of the substituent (X = H, NO2, COOH, Cl, OCH3, OH, N(CH3)2, and O) on the extent of the charge transfer to the electron‐withdrawing NO2 group directly linked to the ethylenic (C = C) unit. The Raman spectra and quantum chemical calculations show clearly the correlation of the electron donating power of the X group with the wavenumbers of the νs(NO2) and ν (C = C)sty normal modes. In conditions of resonance with the lowest excited electronic state, one observes for X = OH and N(CH3)2 that the symmetric stretching of the NO2, νs(NO2), is the most substantially enhanced mode, whereas for X = O, the chromophore is extended over the whole molecule, with substantial enhancement of several carbon backbone modes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Pure nesquehonite (MgCO3·3H2O)/Mg(HCO3)(OH)·2H2O was synthesised and characterised by a combination of thermo‐Raman spectroscopy and thermogravimetry with evolved gas analysis. Thermo‐Raman spectroscopy shows an intense band at 1098 cm−1, which shifts to 1105 cm−1 at 450 °C, assigned to the ν1CO32− symmetric stretching mode. Two bands at 1419 and 1509 cm−1 assigned to the ν3 antisymmetric stretching mode shift to 1434 and 1504 cm−1 at 175 °C. Two new peaks at 1385 and 1405 cm−1 observed at temperatures higher than 175 °C are assigned to the antisymmetric stretching modes of the (HCO3) units. Throughout all the thermo‐Raman spectra, a band at 3550 cm−1 is attributed to the stretching vibration of OH units. Raman bands at 3124, 3295 and 3423 cm−1 are assigned to water stretching vibrations. The intensity of these bands is lost by 175 °C. The Raman spectra were in harmony with the thermal analysis data. This research has defined the thermal stability of one of the hydrous carbonates, namely nesquehonite. Thermo‐Raman spectroscopy enables the thermal stability of the mineral nesquehonite to be defined, and, further, the changes in the formula of nesquehonite with temperature change can be defined. Indeed, Raman spectroscopy enables the formula of nesquehonite to be better defined as Mg(OH)(HCO3)·2H2O. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Raman spectroscopy complemented by infrared spectroscopy was used to characterise both gallium oxyhydroxide (α‐GaO(OH)) and gallium oxide (β‐Ga2O3) nanorods synthesised with and without the surfactants using a soft chemical methodology at low temperatures. Nano‐ to micro‐sized gallium oxyhydroxide and gallium oxide materials were characterised and analysed by both X‐ray diffraction and Raman spectroscopy. Rod‐like GaO(OH) crystals with average length of ∼2.5 µm and width of 1.5 µm were obtained. Upon thermally treating gallium oxyhydroxide GaO(OH) to 900 °C, β‐Ga2O3 was synthesised retaining the initial GaO(OH) morphology. Raman spectroscopy has been used to study the structure of nanorods of GaO(OH) and Ga2O3 crystals. Raman spectroscopy shows bands characteristic of GaO(OH) at 950 and ∼1000 cm−1 attributed to Ga OH deformation modes. Bands at 261, 275, 433 and 522 cm−1 are assigned to vibrational modes involving Ga OH units. Bands observed at 320, 346, 418 and 472 cm−1 are assigned to the deformation modes of Ga2O6 octahedra. Two sharp infrared bands at 2948 and 2916 cm−1 are attributed to the GaO(OH) symmetric stretching vibrations. Raman spectroscopy of Ga2O3 provides bands at 630, 656 and 767 cm−1 which are assigned to the bending and stretching of GaO4 units. Raman bands at 417 and 475 cm−1 are attributed to the symmetric stretching modes of GaO2 units. The Raman bands at 319 and 347 cm−1 are assigned to the bending modes of GaO2 units. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The absolute Raman scattering cross sections (σRS) for the 471, 217, and 153 cm−1 modes of sulfur were measured as 6.0 ± 1.2 × 10−27, 7.7 ± 1.6 × 10−27, and 1.2 ± 0.24 × 10−26 cm2 at 815, 799, and 794 nm, respectively, using a 785‐nm pump laser. The corresponding values of σRS at 1120, 1089, and 1081 nm were determined to be 1.5 ± 0.3 × 10−27, 1.2 ± 0.24 × 10−27, and 1.2 ± 0.24 × 10−27 cm2 using a 1064‐nm laser. A temperature‐controlled, small‐cavity (2.125 mm diameter) blackbody source was used to calibrate the signal output of the Raman spectrometers for these measurements. Standoff Raman detection of a 6‐mm‐thick sulfur specimen located at 1500 m from the pump laser and the Raman spectrometer was made using a 1.4‐W, CW, 785‐nm pump laser. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
We demonstrated stimulated Raman scattering (SRS) of carbon disulfide (CS2) influenced by β‐carotene in a liquid‐core optical fiber (LCOF). Owing to the double fluorescence characteristics and large third‐order optical nonlinearity of β‐carotene, the high‐order Stokes lines, such as the seventh‐order Stokes line of CS2, can be observed at a relatively low input‐laser power. The thresholds of Stokes lines lowered with the addition of the carotenoid when the concentration of solution was within 10−12 and 10−7 mol/L; the threshold increments and intensities of Stokes lines were correlative with the fluorescence profile of β‐carotene: when the fluorescence intensity of the wavenumber region on the spectrum was high, the Stokes line intensity was also high and its threshold increment was small, and vice versa. These results are expected to be worthy of the applications on the tunable laser and the seeding laser. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The vibrational spectra of gaseous and liquid 2‐propanol in the C–H stretching region of 2800 ~ 3100 cm−1 were investigated by polarized photoacoustic Raman spectroscopy and conventional Raman spectroscopy, respectively. Using two deuterated samples, that is, CH3CDOHCH3 and CD3CHOHCD3, the overlapping spectral features between the CH and CH3 groups were identified. With the aid of depolarization ratio measurements and density functional theory calculations, a new spectral assignment was presented. In the gas phase, the band at 2884 cm−1 was assigned to the overlapping of one CH3 Fermi resonance mode and a CH stretching of gauche conformer. The bands at 2917 and 2933 cm−1 were assigned to another two CH3 Fermi resonance modes, but the latter includes weak contribution from CH stretching of trans conformer. The bands at 2950 and 2983 cm−1 were assigned to CH3 symmetric and antisymmetric stretching, respectively. The spectral features of liquid 2‐propanol are similar to those in the gas phase except for the blue shift of CH and the red shift of CH3 band positions, which can be attributed to the intermolecular interaction in the liquid state. The new assignments not only clarify the confusions in previous studies from different spectral methods but also provide the reliable groundwork on spectral application of 2‐propanol in the futures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The absolute Raman scattering cross section (σRS) for the 1584‐cm−1 band of benzenethiol at 897 nm (1.383 eV) has been measured to be 8.9 ± 1.8 × 10−30 cm2 using a 785‐nm pump laser. A temperature‐controlled, small‐cavity blackbody source was used to calibrate the signal output of the Raman spectrometer. We also measured the absolute surface‐enhanced Raman scattering cross section (σSERS) of benzenethiol adsorbed onto a silver‐coated, femtosecond laser‐nanostructured substrate. Using the measured values of 8.9 ± 1.8 × 10−30 and 6.6 ± 1.3 × 10−24 cm2 for σRS and σSERS respectively, we calculate an average cross‐section enhancement factor (EF) of 0.8 ± 0.3 × 106. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The high‐resolution stimulated Raman spectra of the ν1/ν5 C–H stretching bands of C2H4 have been recorded and analyzed by means of the tensorial formalism developed in Dijon for X2Y4 asymmetric‐top molecules. A total of 689 lines (428 for ν5 and 261 for ν1) were assigned and fitted as a dyad including Coriolis coupling constants. We obtained a global root mean square deviation of 4.39 × 10− 3 cm− 1 (4.61 × 10− 3 cm− 1 for ν1, 4.25 × 10− 3 cm− 1 for ν5). The nearby 2ν2 band, extrapolated from ν2, was included in the analysis. However, no interaction parameter involving it could be fitted. The analysis is quite satisfactory, although some parts of ν5 are not very well reproduced, probably indicating some yet unidentified resonances. This region is indeed quite dense, with many interacting dark states that cannot be included at present. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Ethyl carbamate (EC), a potentially toxic compound, is found in alcoholic beverages and fermented foodstuff. A combined experimental and theoretical study of Raman on EC is reported in this work for the first time. The Raman bands observed for EC in solid phase are characteristic for the carbonyl group, C―C, C―H and N―H stretching and deformation vibrations. These spectral features coupled with a pKa study allowed establishing the neutral species of EC present in the aqueous solutions experimentally tested at different concentrations. In addition, by performing a density functional theory study in the gas phase, the calculated geometry, the harmonic vibrational modes, and the Raman scattering activities of EC were found to be in good agreement with our experimental data and helped establish the surface‐enhanced Raman scattering (SERS) behavior and EC adsorption geometry on the silver surfaces. The Raman peak at 1006 cm−1, assigned to the υs(CC) + ω(CH) modes, the strongest and best reproducible peak in the SERS spectra, was used for a quantitative evaluation of EC. The limit of detection, which corresponds to a signal‐to‐noise ratio equal to 3, was found to be 2 × 10−7 M (17.8 µg l−1). SERS spectra obtained by using hydroxylamine hydrochloride‐reduced silver nanoparticles provide a fast and reproducible qualitative and quantitative determination of EC in aqueous solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
While recording SERS spectra of pure β‐carotene at sub‐micromole concentrations for reference purpose, we discovered an unusual spectral response never reported before. In pre‐resonance conditions with the 532‐nm line, SERS of β‐carotene with AgNPs exhibits among the strong υ(CC) mode at 1512 cm−1 unshifted from normal Raman spectrum, additional strong bands at 1649, 1575 and 1387 cm−1 as well as other medium bands not observed in the Raman spectrum of the crystalline powder. Such behavior is explained in terms of selection rules relaxation upon cyclohexene terminal rings of the β‐carotene interaction with the NP surface. AFM images of the SERS system suggested dimers and trimers clustering of the nanoparticles with adsorbed β‐carotene. In light of the new SERS feature the consequences in correct interpretation of the SERS imaging from complex biosystems containing carotenoids are discussed. Relative intensity ratio of the β‐carotene band at 1512 cm−1 and water against concentration allowed a reliable SERS calibration curve for 50 to 500 nmol l−1 concentration range and provided quantitative SERS assessment of the carotenoid content in the sea urchin (Paracentrotus lividus) gonads extracts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Here, we study a low (less than 0.1 µg/ml) concentration aqueous suspension of single‐wall carbon nanotubes (SWNTs) by Raman‐induced Kerr effect spectroscopy (RIKES) in the spectral bands 0.1–10 and 100–250 cm−1. This method is capable of carrying out direct investigation of SWNT hydration layers. A comparison of RIKES spectra of SWNT aqueous suspension and that of milli‐Q water shows a considerable growth in the intensity of low wavenumber Raman modes. These modes in the 0.1–10 cm−1 range are attributed to the rotational transitions of H2O2 and H2O molecules. We explain the observed intensity increase as due to the production of hydrogen peroxide and the formation of a low‐density depletion layer on the water–nanotube interface. A few SWNT radial breathing modes (RBM)are observed (ωRBM = 118.5, 164.7 and 233.5 cm−1) in aqueous suspension, which allows us to estimate the SWNT diameters (∼2.0, 1.5, and 1 nm, respectively). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
由于β胡萝卜素分子具有光敏感的特性,同时也具有光采集、光防护功能, 是重要的光电材料, 所以在光器件和光控温方面有重要应用。线性多烯分子的共振拉曼光谱是π电子能隙对碳碳键振动调制的结果,这种调制作用与外场有关,研究其在外场下的分子结构和性能变化既有理论意义也有应用价值。测量了β胡萝卜素分子在环己醇中341~275 K温度范围内的紫外-可见吸收光谱和共振拉曼光谱。实验结果表明随着温度的降低, 黄琨因子和碳碳键的每个振动模的电子-声子耦合常数减小, 紫外-可见吸收光谱红移, 碳碳键拉曼散射截面增加。295 K时溶液从液相转为固相,溶液相变后,β胡萝卜素分子的构型变化特征能ε变大,且使固相中的黄琨因子、紫外-可见吸收峰波长、电子-振动耦合系数、拉曼散射截面都随着温度的降低变化率增加。固相中的黄琨因子比液相中的黄琨因子大一个数量级。液相中的构型变化特征能为ε=0.206 7 eV,固相中的构型变化特征能为εb=0.559 6 eV, 构型变化特征能增加,使有效共轭长度n(T)=n0exp(ε/kT)随温度的降低而增加的速率变大;导致π电子能隙减小加快,电子能隙对β胡萝卜素分子碳碳键振动的调制作用增强,电子振动耦合系数增加,拉曼散射截面大幅增加。  相似文献   

14.
A concentration‐dependent Raman study of the ν(C Br) stretching and trigonal bending modes of 2‐ and 3‐Br‐pyridine (2Br‐p and 3Br‐p) in CH3OH was performed at different mole fractions of the reference molecule, 2Br‐p/3Br‐p, from 0.1 to 0.9 in order to understand the origin of blue/red wavenumber shifts of the vibrational modes due to hydrogen‐bond formation. The appearance of additional Raman bands in these binary systems at ∼617 cm−1in the case of 2Br‐p and at ∼618 cm−1 in the case of 3Br‐p compared to neat bromopyridine derivatives were attributed to specific hydrogen‐bonded complexes formed in the mixtures. The interpretation of experimental results is supported by density functional calculations on optimized geometries and vibrational wavenumbers of 2Br‐p and 3Br‐p and a series of hydrogen‐bonded complexes with methanol. The parameters obtained from these calculations were used for a qualitative explanation of the blue/red shifts. The wavenumber shifts and linewidth changes for the ν(C Br) stretching and trigonal bending modes as a function of concentration reveal that the caging effects leading to motional narrowing and diffusion‐causing line broadening are simultaneously operative, in addition to the blue shift caused due to hydrogen bonding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The surface‐enhanced Raman scattering (SERS) of sodium alginates and their hetero‐ and homopolymeric fractions obtained from four seaweeds of the Chilean coast was studied. Alginic acid is a copolymer of β‐D ‐mannuronic acid (M) and α‐L guluronic acid (G), linked 1 → 4, forming two homopolymeric fractions (MM and GG) and a heteropolymeric fraction (MG). The SERS spectra were registered on silver colloid with the 632.8 nm line of a He Ne laser. The SERS spectra of sodium alginate and the polyguluronate fraction present various carboxylate bands which are probably due to the coexistence of different molecular conformations. SERS allows to differentiate the hetero‐ and homopolymeric fractions of alginic acid by characteristic bands. In the fingerprint region, all the poly‐D ‐mannuronate samples present a band around 946 cm−1 assigned to C O stretching, and C C H and C O H deformation vibrations, a band at 863 cm−1 assigned to deformation vibration of β‐C1 H group, and one at 799–788 cm−1 due to the contributions of various vibration modes. Poly‐L ‐guluronate spectra show three characteristic bands, at 928–913 cm−1 assigned to symmetric stretching vibration of C O C group, at 890–889 cm−1 due to C C H, skeletal C C, and C O vibrations, and at 797 cm−1 assigned to α C1 H deformation vibration. The heteropolymeric fractions present two characteristic bands in the region with the more important one being an intense band at 730 cm−1 due to ring breathing vibration mode. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The use of Au@SiO2 core/shell nanoparticle (NP) assemblage with highly sensitive surface‐enhanced Raman scattering (SERS) was investigated for the determination of glucose and uric acid in this study. Rhodamine 6G dye molecules were used to evaluate the SERS enhancement factor for the synthesized Au@SiO2 core/shell NPs with various silica shell thicknesses. The enhancement of SERS signal from Rhodamine 6G was found to increase with a decrease in the shell thickness. The core/shell assemblage with silica layer of 1–2 nm over a Au NP of ~36 nm showed the highest SERS signal. Our results show that the SERS technique is able to detect glucose and uric acid within wide concentration ranges, i.e. 20 ng/dL to 20 mg/dL (10−12–10−3 M) and 16.8 ng/dL to 2.9 mg/dL (10−11–1.72 × 10−4 M), respectively, with associated lower detection limits of ~20 ng/dL (~1.0 × 10−12 M) and ~16.8 ng/dL (~1.0 × 10−11 M). Our work offers a low‐cost route to the fabrication of agile sensing devices applicable to the monitoring of disease progression. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Two hydrated hydroxy magnesium carbonate minerals brugnatellite and coalingite with a hydrotalcite‐like structure were studied by Raman spectroscopy. Intense bands are observed at 1094 cm−1 for brugnatellite and at 1093 cm−1 for coalingite attributed to the CO32−ν1 symmetric stretching mode. Additional low intensity bands are observed at 1064 cm−1. The existence of two symmetric stretching modes is accounted for in terms of different anion structural arrangements. Very low intensity bands at 1377 and 1451 cm−1 are observed for brugnatellite, and the Raman spectrum of coalingite displays two bands at 1420 and 1465 cm−1 attributed to the (CO3)2−ν3 antisymmetric stretching modes. Very low intensity bands at 792 cm−1 for brugnatellite and 797 cm−1 for coalingite are assigned to the CO32− out‐of‐plane bend (ν2). X‐ray diffraction studies by other researchers have shown that these minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality and explains why the Raman spectra of these minerals have not been previously or sufficiently described. A comparison is made with the Raman spectra of other hydrated magnesium carbonate minerals. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The isotropic and anisotropic parts of the Raman spectra of NH2 bending and ν(CO) stretching modes of HCONH2 in a hydrogen‐bonding solvent, methanol, at different concentrations have been analyzed carefully in order to study the noncoincidence effect (NCE). In neat HCONH2, the experimentally measured values of noncoincidence Δνnc are ∼11 and ∼18 cm−1 for the NH2 bending and ν(CO) stretching modes, which reduce to 0.45 and 1.14 cm−1, respectively at the concentration of HCONH2 in mole fraction, χm = 0.1. The experimental results have been explained on the basis of two models, namely, the microscopic prediction of Logan and the macroscopic model of Mirone and Fini. The relative success of the two models in explaining the experimental data for both the modes have been discussed. It has been observed that in case of the ν(CO) stretching vibrational mode the Logan model can reproduce the experimental data rather precisely, whereas in the case of the NH2 bending mode, Mirone and Fini model yields more accurate results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Raman spectra of eight polycrystalline apatites of the general formula La10−xSi6−yM′yO26 ± δ with M′ = Al or Fe were obtained at 300 K. Raman spectra of La10Si4Fe2O26 and La9.83Si4.5Al1.5O26 were investigated in the range 80–1000 K and 80–623 K, respectively. Tentative assignments of bands to stretching and bending modes of SiO4 tetrahedra and to M'O vibrations are proposed. Except for the two new bands, which appear around 700 cm−1 when Al is replaced by Fe, only some band broadenings and relative intensity changes are observed as a function of the rate of O5 or La vacancies. Most of the bands soften and broaden continuously when raising the temperature. This is an indication that the Al‐ and Fe‐substituted apatites do not undergo any structural change up to 1000 K. Above 1000 K, the broad and weak shoulder observed at 850 cm−1 for La10Si4Fe2O26 is replaced by a strong band at 868 cm−1, suggesting that SiO4 tetrahedra undergo a structural modification. All compounds show the same residual band broadening at 80 K. This suggests that there is a small rate of static disorder preferentially related to the solubility of Al and Fe in the Si sublattice rather than to other defects. Moreover, the observation of FeO modes indicates that the dynamics of the solid solution obeys the so‐called two‐mode behavior. The occurrence of FeO stretching vibrations 150 cm−1 lower than for those of SiO suggests that the coordination number of iron could be larger than 4, particularly for the Fe4+ species. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
High‐resolution stimulated Raman spectra of13C2H4 in the regions of the ν2 and ν3 Raman active modes have been recorded at two temperatures (145 and 296 K) based on the quasi continuous‐wave (cw) stimulated Raman spectrometer at Instituto de Estructura de la Materia IEM‐CSIC in Madrid. A tensorial formalism adapted to X2Y4 planar asymmetric tops with D2h symmetry (developed in Dijon) and a program suite called D2hTDS (now part of the XTDS/SPVIEW spectroscopic software) were proposed to analyze and calculate the high‐resolution spectra. A total of 103 and 51 lines corresponding to ν2 and ν3 Raman active modes have been assigned and fitted in wavenumber with a global root mean square deviation of 0.54 × 10−3 and 0.36 × 10−3 cm−1, respectively. Due to the fact that the Raman scattering effect is weak, we did not perform in this contribution the line intensities analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号