首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Here we present a novel approach using surface‐enhanced Raman scattering (SERS) spectroscopy for the sequence‐specific detection of DNA utilizing magnetic nanoparticles (MNPs) for the enrichment of the target molecules. To achieve fast and efficient binding of longer DNA strands, e.g. PCR products, the hybridization procedure is performed in solution. To further purify and enrich the DNA strands of interest, MNPs are used for their separation. Following the binding of the target DNA, a dye‐modified, short synthetic ssDNA is hybridized, which serves as label for the SERS detection. The SERS spectra are used to identify the bound molecules. The applicability of this approach was first tested with short synthetic oligonucleotides to evaluate its specificity. Afterward, the system was applied to detect PCR products amplified from DNA of specific agents of epizootic diseases. Sequences of the bacterium Mycoplasma mycoides subspecies mycoides small colony type (MmmSC), causing contagious bovine pleuropneumonia (CBPP) were used as PCR targets. To demonstrate the multiplexing capability of SERS, the simultaneous detection of three different PCR products labeled with three dyes was performed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, two immunoassay methods based on SERS are developed for multiplex analysis, both of which stemmed from the concept of forming a sandwich structure ‘capture antibody substrate/antigen/Raman‐reporter‐labeled immuno‐nanoparticles’. They are two‐molecule labeled one‐nanoparticle and one‐molecule labeled two‐nanoparticle methods. In both the methods, two different antibodies covalently bound to a solid substrate can specifically capture two different antigens from a sample. The captured antigens in turn bind selectively to their corresponding antibodies immobilized on Raman‐reporter‐labeled nanoparticles. Multianalyte immunoassay is successfully demonstrated by the detection of characteristic Raman bands of the probe molecules only when the antigen and antibody are matched. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Thymosin‐β4 is a peptide found at high concentrations in a wide range of mammalian cells. It has been shown to be elevated in metastatic cells. In this study, the surface‐enhanced Raman spectrum of thymosin‐β4 was obtained using a silver nanorod array surface‐enhanced Raman scattering substrate. Significant Raman peaks were found, and the corresponding vibrational modes were assigned based on previously published literature, with amide A–B, amide I, and amide III modes all identified. The majority of the remaining peaks were assigned modes based on the spectra of lysine and glutamic acid, the two most abundant amino acids in the thymosin‐β4 sequence. A standard Raman spectrum of thymosin‐β4 was also obtained and analyzed for comparison. Because thymosin‐β4 plays a significant role in regulating the formation of cellular cytoskeleton and other several biological processes, its Raman spectrum will be of use to researchers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Ag nanoparticles synthesized on porous silicon samples were studied and applied as substrates for surface‐enhanced Raman scattering (SERS). The metallic nanostructures prepared by immersion plating were characterized by UV–Vis reflectance spectroscopy and scanning electron microscopy. SERS activity of the substrates was tested using Cyanine dye 1,3,3,1′,3′,3′‐esamethyl‐5,5′‐dimethoxyindodicarbocyanine iodide (Cy5‐OCH3) as a probe molecule. The Raman spectra obtained for different excitation wavelengths indicate amplifications ascribed to plasmonic resonances with an enhancement factor up to 107. CGIYRLRS peptides were chemisorbed on the Ag nanoparticles with the plasmonic resonance tuned at the excitation energy. Such oligopeptides were used as baits for a specific polyclonal antibody. The overall Raman enhancement allowed to evidence a good selectivity to the target analyte as required by most of the SERS applications on biological assays. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The development of rapid, highly sensitive detection methods for α‐fetoprotein (AFP) is very important. As hepatocellular carcinoma is closely related to the level of AFP in the blood, it is necessary to maintain an AFP concentration below the safety limit. In this paper, we propose a universal, rapid, sensitive, and highly specific immunoassay system utilizing gold nanoparticles (AuNPs) and surface‐enhanced Raman scattering (SERS). This new system features a sandwich structure combining mercaptobenzoic acid‐labeled immunogold nanoparticles with the antigen and the antibody atop a pre‐designed substrate made of a glass slide modified with AuNPs. This SERS‐based immunoassay can detect AFP concentrations as low as 100 pg/ml, which is a significant improvement on the capabilities of the enzyme‐linked immunosorbent assay method. A good linear relationship between the SERS peak intensity and the logarithm of antigen concentrations (from 1 ng/ml to 100 ng/ml) was observed. This technique provides an effective model for the detection of biomarkers in medical diagnostics, criminal investigation, and other fields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Here we report the synthesis of 2–5 nm size gold nanoparticle labels for surface‐enhanced Raman Spectroscopy (SERS) based immunoassay to detect protein molecules. The Au nanoparticles were conjugated with fluorescein isothiocyanate (FITC) and goat anti‐h‐IgG (immunoglobin) and the resultant particles were used for the detection of h‐IgG. Commercially available nitrocellulose strip and silver enhancement method were used for SERS‐based immunoassays. The FITC acts as a Raman probe, and vibrational fingerprint of this molecule was used for the detection of h‐IgG in concentration ranging from 1 to 100 ng/µl. Our Raman probe is robust and small in size and has high water solubility with minimum steric effect during antigen–antibody binding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Magnetic immuno‐nanorice particles were used for the capture and detection of Escherichia coli (E. coli) bacteria. The selectivity of the method was attained by attaching a specific anti‐E. coli antibody on the surface of the nanorice, binding exclusively to E. coli. The antibody attachment to the nanorice (60% sorption efficiency) took place through protein‐A molecules (82% uptake). Once E. coli was captured, the immuno‐nanorice‐bacteria complex was separated from the solution using the magnetic property of the nanorice. The detection of bacteria sorbed onto the immuno‐nanorice was accomplished using the ultra‐violet resonance Raman (UVRR) method, detecting single bacterial cells. Specific information concerning the aromatic residues tyrosine (Tyr), phenylalanine (Phe) and tryptophan (Trp) was derived. The discriminant function and cluster hierarchical analysis confirmed the specific and reliable bacteria‐detection capabilities. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Lactic acid is a simple and effective indicator for estimating physiological function. Rapid and sensitive detection of lactic acid is very useful in clinical diagnosis. However, the concentration of lactic acid in the physiological state is too low to be detected using traditional Raman spectroscopy. We applied silver colloidal nanoparticles‐mediated surface‐enhanced Raman spectroscopy (SERS) for rapid identification and quantification of lactic acid. The standard SERS spectra of lactic acid were defined and the 1395 cm−1 band intensity was used for quantification from 0.3 to 2 mM (R2 = 0.99). In clinical blood sample measurement, the ultrafiltration (cutoff value 5 kDa) can efficiently reduce background fluorescence to improve SERS performance. We established identical and optimal procedure by adjusting reaction time and volume ratio of serum and nanoparticles to obtain high SERS reproducibility. Finally, we showed that silver colloidal nanoparticles‐mediated SERS technique was successfully applied to detect lactic acid at physiological concentrations in the blood. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Aromatic interactions are important stabilizing forces in proteins but are difficult to detect in the absence of high‐resolution structures. Ultraviolet resonance Raman spectroscopy is used to probe the vibrational signatures of aromatic interactions in TrpZip2, a synthetic β‐hairpin peptide that is stabilized by edge‐to‐face and face‐to‐face tryptophan π‐π interactions. The vibrational markers of isolated edge‐to‐face π‐π interactions are investigated in the related β‐hairpin peptide W2W11. The bands that comprise the Fermi doublet exhibit systematic shifts in position and intensity for TrpZip2 and W2W11 relative to the model peptide, W2W9, which does not form aromatic interactions. Additionally, hypochromism of the Bb absorption band of tryptophan in TrpZip2 leads to a decrease in the relative Raman cross‐sections of Bb‐coupled Raman bands. These results reveal spectral markers for stabilizing tryptophan π‐π interactions and indicate that ultraviolet resonance Raman may be an important tool for the characterization of these biological forces. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In plants, Photosystem I (PSI) is composed of a core complex and a membrane‐associated antenna complex light‐harvesting complex I that captures light and funnels its energy to the core complex. To obtain Raman structural information on β‐carotenes embedded in the PSI core complex, a ‘sandwich’ system of roughened silver slice: target protein complexes: single silver nanoparticles was fabricated for Surface‐Enhanced Resonance Raman Scattering (SERRS) measurements. This study provided a method to overcome spectral irreproducibility, which is the main drawback of Surface‐Enhanced Raman Scattering/SERRS‐based studies. The Raman spectra of β‐carotenes embedded in the PSI core complex can be obtained at very low sample concentrations (1–5 µg Chl/ml) and high signal/noise ratios. The β‐carotenes in the spinach PSI core complex were predominantly all‐trans configuration. The membrane protein‐mediated adsorption of silver nanoparticles induced the uniform distribution of a large number of single nanoparticles, which contributed to achieving highly reproducible SERRS spectra. This study is the first to apply single silver nanoparticle‐based SERRS analysis in membrane proteins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
We created and studied a novel nanoprobe for spectroscopic molecular imaging of the epidermal growth factor (EGF) receptor, whose over‐expression is a hallmark of a wide range of cancers. Silver nanoparticles (AgNPs) of 45 nm diameter were synthesized and coupled to EGF by α‐lipoic acid, a short ligand that exhibits excellent silver binding affinity. Time‐of‐flight mass spectroscopy demonstrates formation of the protein complex. Enzyme‐linked immunosorbent assay verifies the protein complex is 100% active for the EGF receptor, alone and, following conjugation to silver nanoparticles. Compared with its monosulfide analog, 6‐mercaptohexanoic acid, α‐lipoic acid is stabilized by binding to silver with a total energy that is lower by 1.38 eV, as found from Density Functional Theory (DFT)/natural bond analysis calculations. A Highest Occupied Molecular Orbital (HOMO)‐Lowest Unoccupied Molecular Orbital (LUMO) gap energy of 5.25 (spin‐up electrons) and 5.74 eV (spin‐down electrons) was obtained for the silver‐α‐lipoic acid complex. This is the first report of silver nanoparticles being attached to EGF, and the first theoretical and experimental report on the surface enhanced Raman spectroscopy spectral interpretation of α‐lipoic acid bound to silver. These nanoprobes exhibit surface enhanced Raman spectroscopy, when aggregated in solution, at picomolar concentrations and have the necessary properties – specificity, sensitivity and stability – to serve as molecular imaging agents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Surface‐enhanced Raman scattering of p‐aminothiophenol and p‐nitrothiophenol were obtained on the surface of Cu2O nanoparticles, showing novel spectral changes with morphology‐dependent and time‐dependent characteristics. The measured Raman signals were believed to partly originate from the newly produced surface species p,p′‐dimercaptoazobenzene. The nature of surface chemisorption status during Raman measurement was investigated experimentally and theoretically via combined surface‐enhanced Raman scattering and density functional theory study, indicating that surface catalytic reaction of p‐aminothiophenol and p‐nitrothiophenol could take place on the surface of oxide nanostructures as well as coinage metal material. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
We have first time demonstrated the construction of a plasmonic gold dimer model for bioassays based on immune recognition with surface‐enhanced Raman scattering (SERS). To induce a strong plasmonic coupling effect, a dimer of gold nanoparticles (NPs) with a Raman label located between adjacent NPs is assembled through specific recognition in biological systems. One promising application for this model is the provision of a new type of in situ self‐calibrated and reliable SERS platform where biotinylated molecules can selectively be trapped by streptavidin and placed in the gap enhanced plasmonic field, which may enable the development of powerful, biospecific recognition‐based SERS assays. The capabilities of the dimeric constructions for analytical applications were demonstrated through the use of the SERS technique to detect biotin at very low concentrations. Additionally, the spatial SERS radiation for the gold dimer assembled on the silicon slide was simulated using the finite‐difference time‐domain method; this simulation demonstrated the distribution of the electric field as well as the utility of the proposed system, thereby introducing potential uses of bio‐specific recognition as well as opportunities for the construction of plasmonically coupled nanostructures and bioassay applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The Surface enhanced resonance Raman spectroscopy (SERRS) spectra of three modified atto680 dyes were recorded using Au nanoparticles and an excitation laser operating at 670 nm. The dyes were modified with linker groups based on the small peptides, Cys, Cys–Gly and Cys–Gly–Gly. The Cys thiol group acted as the coupling point to the Au surface and the Gly  NH2 group used to attach the dye. The maximum signal was recorded for the Cys–Gly linker. This gave a signal intensity for the 577 cm−1 Raman peak of the atto680 dye that was more than 27 times greater than the unmodified dye. The Au nanoparticles used had a diameter of 49.8 ± 1.2 nm and were synthesised by the citrate reduction method. The Raman dye‐AuNP probes were also used in an immunoassay to detect mouse IgG in the femto mole range. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Techniques for rapid and sensitive detection of energetics such as cyclotrimethylenetrinitramine (RDX) are needed both for environmental and security screening applications. Here we report the use of surface‐enhanced Raman scattering (SERS) spectroscopy to detect traces of RDX with good sensitivity and reproducibility. Using gold (Au) nanoparticles (∼90–100 nm in diameter) as SERS substrates, RDX was detectable at concentrations as low as 0.15 mg/l in a contaminated groundwater sample. This detection limit is about two orders of magnitude lower than those reported previously using SERS techniques. A surface enhancement factor of ∼6 × 104 was obtained. This research further demonstrates the potential for using SERS as a rapid, in situ field screening tool for energetics detection when coupled with a portable Raman spectrometer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Structural complexity of biological drug products presents an analytical challenge in terms of early detection of aggregation and/or degradation. In the present study, Raman and Raman optical activity (ROA) were evaluated for their sensitivity to detect heat‐induced molecular instability in an Immunoglobulin G4 subclass therapeutic monoclonal antibody present in its formulation matrix. The therapeutic antibody was subjected to heat stress at 50 °C and was analyzed at various time points up to 1 month. The current results suggest that Raman and ROA are sensitive to early‐stage detection of heat‐induced instability of the antibody, in which significant changes could be observed at 1 week of stress. ROA could provide early detection of the subtle differences at the tertiary structure level in a heat‐stressed monoclonal antibody and Raman/ROA spectra could provide early detection in secondary structural changes as well. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Shell‐isolated nanoparticle‐enhanced Raman spectroscopy (SHINERS) as a new member of Raman technique garnered great attention among scientific community. In this work, we used an improved experimental setup to float the bare silver nanoparticles in air with the help of extraneous airflow, and used atomic layer deposition (ALD) method to coat ultra‐thin inert shell without pinholes. Under optimal conditions, we successfully prepared three kinds of SHINERS NPs (Ag@Al2O3, Ag@SiO2 and Ag@TiO2) in large quantity without pinholes. The ultra‐thin inert shell maintains the SERS activity of silver nanoparticles for long period of time. Transmission electron microscopy (TEM) images confirm the uniform coating of shell material on silver nanoparticles. Finally, the as‐prepared SHINs have been applied to detect various samples to demonstrate the applications. The presented ALD method offers a unique way to coat ultrathin shell (1–10 nm) on metal nanoparticles in large quantity (1–10 g) for practical applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Surface plasmon spectroscopy of serum albumin protected prism‐shaped silver nanoparticles is used as simple and effective sensing tool to detect glutamate salts. The approach does not require any electrochemical setup to detect glutamates, in contrast to common techniques to detect glutamates in general. Experiments reveal that upon presence of high concentrations of glutamate salts, the prism‐shaped nanoparticles are transformed to smaller‐sized nanoclusters, while the remaining nanoparticles are assembled to form aggregates. Control experiments confirm that the interaction is specific to the serum albumin coating, the prism shape of the nanoparticles, and to silver.  相似文献   

19.
The characteristics of the sol–gel matrix embedding Ag nanoparticles functionalized with 25,27‐dimercaptoacetic acid‐26,28‐dihydroxy‐4‐tert‐butylcalix[4]arene (DMCX) suitable for the in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater is presented. The DMCX‐functionalized silver nanoparticles were produced by the thermal reduction method in xerogel film. The silver colloid blocks were formed in the sol–gel matrix, with a diameter ranging from 50 to 120 nm. DMCX forming the monolayer on the silver nanoparticle surface contributes to the surface‐enhanced Raman scattering (SERS) activity due to the aggregation of silver nanoparticles and the preconcentration of PAH molecules within the zone of electromagnetic enhancement. When selected, PAH molecules e.g. pyrene and naphthalene were adsorbed onto the SERS substrate; Raman band positions of PAH were slightly shifted. A calibration procedure reveals that this type of SERS substrate has a limit of detection of 3 × 10−10 mol/l for pyrene and 13 × 10−9 mol/l for naphthalene in artificial seawater. The Raman signal response on a pyrene concentration change in artificial seawater was evaluated using a 671‐nm Raman setup with a flow‐through cell. This type of SERS substrate will be suitable for the in situ trace detection of pollutant chemicals in seawater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Detailed studies of the mechanism of surface‐enhanced (resonance) Raman spectroscopy (SE(R)RS), and its applications, place a number of demands on the properties of SERS scatterers. With large Raman cross‐sections, versatile synthetic chemistry and complete lack of fluorescence, free dipyrrins meet these demands but the Raman and SE(R)RS spectroscopy of free dipyrrins is largely unknown. The first study of the Raman spectroscopy of free dipyrrins is therefore presented in this work. The nonresonant Raman, resonant Raman and surface‐enhanced Raman spectra of a typical meso aryl‐substituted‐dipyrrin are reported. Absolute differential cross‐sections are obtained for excitation wavelengths in the near infrared and visible region, in solution phase and for dipyrrin adsorbed on the surface of silver nanoparticles. Raman enhancement factors for SERRS and resonance Raman are calculated from the observed differential cross‐sections. The magnitudes of the resonantly enhanced cross‐sections are similar to those recently reported for strong SERS dyes such as Rhodamine 6G and Crystal Violet. Free dipyrrins offer the advantages of existing SERS dyes but without the drawback of strong fluorescence. Free dipyrrins should therefore find applications in all areas of Raman spectroscopy including fundamental studies of the mechanisms of SERS and bioanalytical and environmental applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号