首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 536 毫秒
1.
Methods for rapid identification of explosives and their associated compounds at trace level quantities are needed for security screening applications. In this paper, we apply the surface‐enhanced Raman spectroscopy (SERS) to detect and identify traces (as low as tens of pg) of pentaerythritol tetranitrate (PETN), ethylene glycol dinitrate (EGDN), cyclotrimethylene‐trinitramine (RDX) and trinitrotoluene (TNT) using commercially available substrates (Klarite®, Renishaw diagnostics). High quality spectra were achieved within 10 s with a compact Raman spectrometer. Principal component analysis (PCA) of the data was performed to understand what factors affected the spectral variation across the samples. It was found that 76% of the spectral variation was explained by the first three PCs. Score plots for these components showed that the energetic materials can be clearly classified on the basis of SERS spectra also at trace level quantity. Our measurements further demonstrate the potential for using SERS as fast, in situ analytical tool for safety devices, with a sensitivity which competes and, in some cases, overcomes other techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The characteristics of the sol–gel matrix embedding Ag nanoparticles functionalized with 25,27‐dimercaptoacetic acid‐26,28‐dihydroxy‐4‐tert‐butylcalix[4]arene (DMCX) suitable for the in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater is presented. The DMCX‐functionalized silver nanoparticles were produced by the thermal reduction method in xerogel film. The silver colloid blocks were formed in the sol–gel matrix, with a diameter ranging from 50 to 120 nm. DMCX forming the monolayer on the silver nanoparticle surface contributes to the surface‐enhanced Raman scattering (SERS) activity due to the aggregation of silver nanoparticles and the preconcentration of PAH molecules within the zone of electromagnetic enhancement. When selected, PAH molecules e.g. pyrene and naphthalene were adsorbed onto the SERS substrate; Raman band positions of PAH were slightly shifted. A calibration procedure reveals that this type of SERS substrate has a limit of detection of 3 × 10−10 mol/l for pyrene and 13 × 10−9 mol/l for naphthalene in artificial seawater. The Raman signal response on a pyrene concentration change in artificial seawater was evaluated using a 671‐nm Raman setup with a flow‐through cell. This type of SERS substrate will be suitable for the in situ trace detection of pollutant chemicals in seawater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In situ rapid detection and identification of polybrominated diphenyl ethers, a group of well‐known persistent organic pollutants, present a great challenge. To develop a portable and sensitive surface‐enhanced Raman scattering (SERS) sensor for rapid 2,2′,4,4′‐tetrabromodiphenyl ether (BDE‐47) detection, we adopted the most commonly used Au nanoparticles, which are effective in the analysis of hydrophobic BDE‐47 with a simple optimization in citrate content and sampling technique. Qualitative and quantitative determination of BDE‐47 was achieved using a portable Raman spectrometer. The SERS response exhibited a linear dependence on the BDE‐47 concentration up to 1000 nM with a detection limit of 75 nM. The density function theory‐calculated Raman spectra agreed well with the experimental observations, and the results justified the existence of electromagnetic enhancement and charge transfer mechanism. This in situ SERS platform allows easy and reliable detection of hydrophobic molecules such as BDE‐47 in complex matrices. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Chromate (CrVI) has emerged as a widespread environmental contaminant found in groundwater and surface water, and there is a great need for rapid detection and monitoring of this contaminant. Normal Raman scattering (NRS) spectroscopy with a detection limit of CrVI at concentrations of 0.2 g/L was attached. And surface-enhanced Raman scattering (SERS) spectroscopy technique was found to be capable of detecting CrVI at concentrations as low as 2.5 mg/L using poly(diallyldimethylammonium) chloride modified gold nanoparticles (PDDA-AuNPs) as a substrate. The SERS substrate was successfully fabricated by combining the selfassembly technique with a heat-treatment-based strategy using poly(diallyldimethylammonium) chloride (PDDA) as the reducing and stabilizing agents. With the 520 cm?1 band of silicon as internal standard, band intensity ratios of CrVI to silicon, that is I 902/I 520, were found to have a quantitative relationship with a large concentration range of CrVI from 0.2 to 20.0 g/L for NRS (R 2 = 0.994) and from 2.5 to 25.0 mg/L for SERS (R 2 = 0.980), respectively. Besides, the SERS methodology was reproducible, and susceptible to the interference of pH value. The optimum pH for CrVI detection by SERS was 3.38. The application of NRS and SERS showed high practical potential for rapid screening and routine analysis of CrVI in environmental samples.  相似文献   

5.
Lactic acid is a simple and effective indicator for estimating physiological function. Rapid and sensitive detection of lactic acid is very useful in clinical diagnosis. However, the concentration of lactic acid in the physiological state is too low to be detected using traditional Raman spectroscopy. We applied silver colloidal nanoparticles‐mediated surface‐enhanced Raman spectroscopy (SERS) for rapid identification and quantification of lactic acid. The standard SERS spectra of lactic acid were defined and the 1395 cm−1 band intensity was used for quantification from 0.3 to 2 mM (R2 = 0.99). In clinical blood sample measurement, the ultrafiltration (cutoff value 5 kDa) can efficiently reduce background fluorescence to improve SERS performance. We established identical and optimal procedure by adjusting reaction time and volume ratio of serum and nanoparticles to obtain high SERS reproducibility. Finally, we showed that silver colloidal nanoparticles‐mediated SERS technique was successfully applied to detect lactic acid at physiological concentrations in the blood. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Phosgene and its analogs are greatly harmful to the public health, environmental safety and homeland security as widely used industrial substances with extremely high toxicity. In order to rapidly evaluate the emergency risk caused by these chemicals, a new highly sensitive method based on surface‐enhanced Raman spectroscopy (SERS) technique for measurement of phosgene agents was developed for the first time. Coupled with a chemical transformation approach, the highly toxic phosgene was conveniently converted to a SERS‐sensitive probe, i.e. iodine (I2), with low toxicity or non‐toxicity. The characteristic SERS peak in 459 cm−1 was used for quantitation and was presumed as a formation of triiodide anion (I3), which was induced in an iodide (I)‐aggregation Au NPs system. The total measurement can be completed in ~20 min with the limits of detection of ~60 µg/l (phosgene) and ~30 µg/l (diphosgene), respectively, on a portable Raman spectrometer. This work is the first report of SERS measurement on phosgene and diphosgene in a quantitative level. This method is expected to meet the requirements of on‐site detection of phosgene agents, promote emergency responses and raise more opportunities for the portable SERS applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Melamine, a nitrogen‐rich chemical, has recently caused enormous economic losses to the food industry due to the cases of milk products adulterated by melamine. This has led to an urgent need of rapid and reliable methods for detection of melamine in food. In this study, surface‐enhanced Raman scattering (SERS) spectroscopy was used to detect melamine in liquid milk. The sample preparation with liquid milk is very easy; it has to be only diluted with double‐distilled water followed by centrifugation. By using a silver colloid, at least a 105‐fold enhancement of the Raman signal was achieved for the measurement of melamine. The limit of detection by this method was 0.01 µg ml−1 for melamine standard samples. Based on the intensity of the Raman vibrational bands normalised to that of the band at 928 cm−1 (CH2), an external standard method was employed for quantitative analysis. The linear regression square (R2) of the curve was 0.9998; the limit of quantitation using this approach was 0.5 µg ml−1 of melamine in liquid milk; the relative standard deviation was ≤10%; and recoveries were from 93 to 109%. The test results for SERS were very precise and as good as those obtained by liquid chromatography/tandem mass spectrometry. The method was simple, fast(only needs about 3 min), cost effective, and sensitive for the detection of melamine in liquid milk samples. Therefore, it is more suitable for the field detection of melamine in liquid milk. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
We developed dielectric heating-assisted nanoimprint method for rapid fabrication of ultraflexible nanostructures. Using spin-coating polyvinyl-chloride (PVC) film on the glass slide, the dielectric heating on PVC film helped the pattern transfer from the mold to PVC film in few seconds. Various kinds of nanostructures were successfully made on PVC films with about 20-μm thickness. We demonstrated the applications of ultraflexible metallic nanostructures for bending measurement using surface plasmon resonance (SPR) and surface enhanced Raman scattering (SERS) on the curved surfaces. For measuring bending angles using SPR on capped nanowire arrays, the minimum detection angle was 2.4 × 10−3 degree under 0.02 nm wavelength resolution. For SERS measurement, the nanorod arrays on a curved substrate can increase SERS signals for two times as compared to planar SERS substrate.  相似文献   

9.
Raman‐enhancing properties of chitosan (CS)‐coated gold/silver nanostars (Au/AgNSs) were demonstrated by using them as a surface‐enhanced Raman scattering (SERS) probe. Based on the energy‐dispersive X‐ray spectroscopy element distribution maps and highly enhanced SERS spectra, we suggest that the incorporation of silver into the NS tips leads to a stronger SERS behavior. The SERS spectra of the proteins adsorbed on the NS surface greatly differ from their respective Raman spectra in both the band positions and relative intensities, indicating that the protein molecules penetrate through the CS coating layer and interact closely with the NS surface. Raman and SERS spectra of Chlamydia trachomatis protease/proteasomelike activity factor are reported for the first time, demonstrating the potential of these NSs for the development of a diagnosis method for Chlamydia based on SERS. The results showed a good SERS performance of the Au/AgNSs and their potential for SERS detection of biomolecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Novel surface enhanced Raman spectroscopy (SERS) platforms have been prepared and used for the bacteria detection. Unlike typical, expensive SERS platforms prepared from gold or silver, the presented platforms are prepared using copper. A new, simple, cost‐efficient and fast high pressure method is used for platform fabrication, through the decomposition of copper hydride. The platform enhancement factors are verified using the malachite green isothiocyanate as a standard. The platforms exhibit extremely high SERS enhancement factors depending on pressure used for their preparation. The calculated enhancement factors have been found in the range between 1.5 × 106 and 4.6 × 107. The SERS spectra reproducibility is established both across a single platform and among different platforms. The average spectral correlation coefficient (Γ) has been calculated to be 0.82. Fully characterized SERS platforms have then been used for detecting Staphylococcus aureus bacteria. These novel platforms have great potential to become excellent tools for biological or medical diagnostics as an alternative to more common silver or gold SERS platforms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
N‐Acetylneuraminic acid (sialic acid, Neu5Ac) has recently gained interest as a potential marker for a variety of pathophysiological processes, although no Raman study has been reported for this important biomolecule. In this paper, the vibrational properties of Neu5Ac were studied by means of Raman, surface‐enhanced Raman scattering (SERS), and density functional theory calculations. By adsorption of Neu5Ac on silver nanoparticle surface, strongly enhanced Raman intensities are obtained, allowing easy measurement of small amounts of aqueous Neu5Ac (10 µl of a 10−7 m solution) utilizing low laser power and short exposure time. The mechanism of adsorption of Neu5Ac on the silver surface is discussed on the basis of the experimental and theoretical results. This study demonstrates that SERS can provide an effective tool for development of a label‐free, rapid, and sensitive optical platform for identification of Neu5Ac. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Surface Enhanced Raman Scattering (SERS) has undergone an important development over the last few years, particularly in the detection and identification of extremely low traces of explosives. The large number of studies and results generated by this increasing research makes a comprehensive overview necessary. This work reviews in detail that research focused on the identification of explosives by SERS, including TNT, DNT, RDX, PETN, TATP, HMTD, perchlorate, etc. either in bulk state, in solution or in vapor phase. In brief, TNT and DNT have been widely studied by SERS due to its aromatic structure and LODs down to 5–10 zg and 10?17–10?13 M have been achieved. The other explosives have been quite less researched; therefore, few results are available to be compared and a bit more modest LODs have been reached such as 10?13 M for RDX, 10?4 M for TATP, 5 pg for PETN, or 10?9 M for perchlorate. In addition, the challenges of detecting both explosives vapors and perchlorate anion by SERS are thoroughly discussed.  相似文献   

13.
Surface‐enhanced Raman spectroscopy (SERS) was used for rapid detection of sodium thiocyanate in milk employing silver aggregates as active substrate. Silver nanoparticles were induced to silver aggregates by trichloroacetic acid (TCA). The limit of detection (LOD) for sodium thiocyanate was 10−2 µg ml−1 in water with an analytical enhancement factor of 5.4 × 106. The silver aggregates represent good reproducibility and stability. Good linear relationship was obtained for sodium thiocyanate in milk at concentration ranges from 0.1 to 10 µg ml−1 (R2 = 0.995). Using TCA as protein precipitator, silver colloid would aggregate spontaneously when mixing with samples during SERS measurement without the need of additional aggregating agent. The simple pretreatment procedures and analytical methods are less time consuming (<10 min) and environmentally friendly, making the proposed method much practical for in situ detection of sodium thiocyanate in market milk. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Ag film over nanosphere (AgFON) substrates for surface‐enhanced Raman spectroscopy (SERS) are shown to be ineffective for the detection of proteins in phosphate buffer solution (PBS) because of the decomposition of the substrate resulting in a total loss of SERS activity. However, modification of these substrates with SiO2 overlayers overcomes this problem. The SiO2 overlayers are produced by filtered arc deposition (FAD) and are characterised by atomic force microscopy (AFM). Their porosity is examined using Raman spectroscopy and the detection of cytochrome c and bovine serum albumin in PBS is successfully demonstrated. These findings show promise for the detection of proteins in biologically relevant conditions using Ag‐based SERS substrates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Ethyl carbamate (EC), a potentially toxic compound, is found in alcoholic beverages and fermented foodstuff. A combined experimental and theoretical study of Raman on EC is reported in this work for the first time. The Raman bands observed for EC in solid phase are characteristic for the carbonyl group, C―C, C―H and N―H stretching and deformation vibrations. These spectral features coupled with a pKa study allowed establishing the neutral species of EC present in the aqueous solutions experimentally tested at different concentrations. In addition, by performing a density functional theory study in the gas phase, the calculated geometry, the harmonic vibrational modes, and the Raman scattering activities of EC were found to be in good agreement with our experimental data and helped establish the surface‐enhanced Raman scattering (SERS) behavior and EC adsorption geometry on the silver surfaces. The Raman peak at 1006 cm−1, assigned to the υs(CC) + ω(CH) modes, the strongest and best reproducible peak in the SERS spectra, was used for a quantitative evaluation of EC. The limit of detection, which corresponds to a signal‐to‐noise ratio equal to 3, was found to be 2 × 10−7 M (17.8 µg l−1). SERS spectra obtained by using hydroxylamine hydrochloride‐reduced silver nanoparticles provide a fast and reproducible qualitative and quantitative determination of EC in aqueous solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
There is an increasing interest in developing surface enhancement Raman spectroscopy methods for intracellular biomolecule and for in vitro protein detection that involve dye or protein–dye conjugates. In this work, we have demonstrated that protein adsorption on silver nanoparticle (AgNP) can significantly attenuate the surface‐enhanced Raman spectroscopy (SERS) signal of dye molecules in both protein/dye mixtures and protein/dye conjugates. SERS spectra of 12 protein/dye mixtures were acquired using 4 proteins [bovine serum albumin (BSA), lysozyme, trypsin, and concanavalin A] and three dyes [Rhodamine 6G, adenine, and fluorescein isothiocyanate (FITC)]. Besides the protein/dye mixtures, spectra were also obtained for the free dyes and four FITC‐conjugated proteins. While no SERS signal was observed in protein/FITC mixtures or conjugates, a significantly reduced SERS intensity (up to 3 orders of magnitude) was observed for both R6G and adenine in their respective protein mixtures. Quantitative estimation of the number of dye molecules absorbed onto AgNP implied that the degree of R6G SERS signal reduction in the R6G/BSA sample is 2 to 3 orders of magnitude higher than what could be accounted for by the difference in the amount of the absorbed dyes. This finding has significant implications for both intracellular SERS analyses and in vitro protein detection using SERS tagging strategies that rely on Raman dyes as reporter molecules. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Highly ordered arrays of thiolated β‐cyclodextrin (HS‐β‐CD) functionalized Ag‐nanorods (Ag‐NRs) with plasmonic antennae enhancement of electrical field have been achieved for encapsulation and rapid detection of polychlorinated biphenyls (PCBs). The large‐area ordered arrays of rigid Ag‐NRs supported on copper base were fabricated via porous anodic aluminum oxide (AAO) template‐assisted electrochemical deposition. The inter‐nanorod gaps between the neighboring Ag‐NRs were tuned to sub‐10 nm by thinning the pore‐wall thickness of the AAO template using diluted H3PO4. The nearly perfect large‐area ordered arrays of Ag‐NRs supported on copper base render these systems excellent in surface‐enhanced Raman scattering (SERS) performance with uniform electric field enhancement, as testified by the SERS spectra and Raman mappings of rhodamine 6 G. Furthermore, the Ag‐NRs were functionalized with HS‐β‐CD molecules so as to capture the apolar PCB molecules in the hydrophobic cavity of the CD. Compared to the ordinary undecorated SERS substrates, the HS‐β‐CD modified Ag‐NR arrays exhibit better capture ability and higher sensitivity in rapid detection of PCBs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Raman spectra in solid and 1 M solution of L ‐cysteine and surface‐enhanced Raman scattering (SERS) spectra of this molecule in the zwitterionic form, by using colloidal silver nanoparticles, have been recorded. Density functional theory with the B3LYP functional was used for the optimizations of the ground state geometries and simulation of the vibrational spectrum of this amino acid. The SERS spectrum with a large silver cluster as a model metallic surface was simulated for the first time. Taking into account the experimental and calculated Raman and SERS vibrations and the corresponding assignments, as well as a comparison of force constants and geometrical parameters between the free zwitterion cysteine and the one in the presence of the colloidal silver nanoparticles, we can confirm the presence of gauche (PH) and trans (PN) rotamers in the solid state, the formation of a S S bond in the solution state, the dissociation of the peptide bond and mixing of rotamers because of the SERS effect, and the relative importance of the interaction of sulphyldryl, NH3+, and carboxylate groups with the metallic surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the fabrication of an active surface‐enhanced Raman scattering (SERS) substrate by self‐assembled silver nanoparticles on a monolayer of 4‐aminophenyl‐group‐modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4‐aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping‐mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p‐aminothiophenol (p‐ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10−9 M . This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon‐based materials for SERS with high sensitivity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The actual surface area of a gold-coated conductive layer over the laser nano-textured surface of sapphire is determined using an electrochemical cyclic voltammetry. The method is down scaled to measure the sensing surface area of 200 × 200 μm2 on a laser-ablated ripple sensor used for surface-enhanced Raman spectroscopy/scattering (SERS). Ripple SERS sensors made on different substrates of high refractive index materials such as GaP, diamond, SiC, and Al2O3 make a versatile sensing platform with the detection of analyte (here a thiophenol) down to 10 nM concentrations. Direct measurement of the surface area provides a powerful tool to investigate roughness, porosity, and morphology of coatings used for SERS or other light harvesting surfaces such as solar cells. Novelty of the proposed method is in the use of cathodic peak of surface passivation–activation cycle for calculation of surface charge. The method enables high-accuracy surface area measurements from as small as 0.01 mm2 pads up to functional solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号