首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孙旭  赵青  李宏福 《物理学报》2008,57(4):2130-2135
基于耦合波理论,对两类半径渐变圆波导TE0n-TE0(n+1)模式转换器进行理论分析、数值计算和仿真模拟.均匀半径渐变波导高功率模式转换器,采用中心频率为17.14GHz、六周期TE02-TE03模式和中心频率为34.30GHz、六周期TE01-TE02模式两种设计参数.非均匀半径渐变波导高功率模式转换器,采用中心频率为34.30GHz、六周期TE 关键词: 模式转换器 耦合波理论 非均匀半径渐变 转换带宽  相似文献   

2.
Influence of magnetic field tapering on operation of a gyrotron working in the TE 4,12 mode at the second harmonic frequency 1013.67 GHz is investigated. It is found that the existing inhomogeneity of the magnetic field of the order of 0.25%–0.50% in the cavity allows one to achieve higher efficiencies. It improves also mode competition scenario by suppressing oscillations of the two parasitic TE 3,6+ and TE 5,5 modes at the fundamental frequencies 513.35 GHz and 503.64 GHz, respectively.  相似文献   

3.
In this paper we present a novel design of a quasi-optical system for conversion of gyrotron outputs into Gaussian-like beams. It consists of a quasi-optical antenna, two focusing mirrors and a filter which removes the side lobes of the beam. The system is appropriate as a transmission line for frequency tunable gyrotrons operating at TE0n mode. As an illustration of our approach, we present results which demonstrate the applicability of the developed system for conversion of the radiation generated by the Gyrotron FU IVA. The examples include conversion of three TE0n modes (TE02, 223 GHz; TE03, 323 GHz; TE04, 423 GHz) into Gaussian- like beams.  相似文献   

4.
Two types of directional couplers for transverse electric (TE) modes are described: short and multihole couplers, respectively. They selectively pick one mode out of a mode mixture in an overmoded circular waveguide system. Unwanted modes are either statistically kept at low level or are suppressed by destructive interference in the coupling waveguide. Mode selectivity and directivity in multihole couplers oscillate up and down with an increasing number of holes, finally reaching a minimum of approximately 20 dB, unless there are competing modes with rational fractions of the beat wavelength. A multihole coupler for the TE02 mode (28 GHz, 63.4 mm waveguide diameter, 41 holes) and a length of 1.6 m shows a calculated directivity of 68 dB and suppresses the unwanted modes TE01 with 34 dB (24 dB), TE22 with 37 dB (45 dB), and further modes TEm (<5, m<6) with 17 dB to 34 dB in forward direction (figures in parentheses are for unwanted modes propagating in backward direction).A short directional coupler for the TE01 mode (28 GHz, 63.4 mm waveguide diameter) with 16 holes and a length of 230 mm shows a directivity of 55 to 100 dB between 27.9 and 28.1 GHz, suppressing the TE02 mode with 35 to 80 dB, the TE03 mode with 30 to 65 dB, and the TE22 mode with 30 to 70 dB.  相似文献   

5.
A novel device, MAGICTRAC, is described for efficient conversion at millimeter wavelengths of the TE m,n whispering-gallery mode into a linearly polarized, free-space Gaussian-like beam. MAGICTRAC uses a mode-converting waveguide taper and three mirror optics, one of which incorporates a twist reflector to linearly polarize the output beam. An example design is presented for the TE15,2 mode at 140 GHz with a calculated efficiency of 96%. Related possible applications include (1) installation of the MAGICTRAC within the vacuum envelope of a gyrotron to separarate the spent e-beam from the generated rf, (2) generation of a whispering-gallery mode by injection of a Gaussian-like beam into the output end, and (3) conversion of TE m,n modes into TE0n modes for low-loss transmission in smooth-wall waveguide.Work performed by LLNL for USDOE under contract W-7405 ENG-48.  相似文献   

6.
We design a single-ridged coaxial hybrid coupler which excites a TE011 mode of high mode content in a cylindrical cavity, resonating at 28.2GHz. The coupler consists of a WR-28 rectangular waveguide, a coaxial TEn11 cavity, and a cylindrical TE011 cavity. Both TE311 coaxial cavity and TE411 single-ridged coaxial cavity are analyzed to examine the TE011 mode purity in the central cavity. Mode purity analysis is performed by a field expansion method using Fourier-Bessel orthonormal basis functions. Numerical calculations predict that the TE411 single-ridged coaxial cavity excites the TE011 mode with mode purity of 98.6%, which is improved by 3% higher compared with the TE311 coaxial cavity. Measurements on the single-ridged coaxial coupler show a resonant frequency at 28.078GHz and ohmic and external Qs of 1560, 473 respectively, which are in good agreement with the simulated results of a 3-D finite element electromagnetic code.  相似文献   

7.
A CW gyrotron for the sensitivity enhancement of NMR spectroscopy through dynamic nuclear polarization has been designed. The gyrotron operates at the second harmonic and frequency of 394.6 GHz with the main operating mode TE0,6. Operating conditions of other neighboring cavity modes such as TE2,6 at frequency of 392.6 GHz and TE2,3 at frequency of 200.7 GHz were also considered. The experimental conditions of the gyrotron at low and high voltages are simulated. The output power of 56 watts corresponds to the efficiency of 2 percent at low voltage operation and frequency of 394.6 GHz is expected.  相似文献   

8.
A broadband quasi-optical (QO) mode converter for a multi-frequency gyrotron has been designed and tested at Forschungszentrum Karlsruhe (FZK). The launcher is optimized for the TE22,8 mode at 140 GHz, but the radiated beams present an almost identically focused pattern for all 9 considered modes between 105 GHz (TE17,6) and 143 GHz (TE23,8). Combining with a beam-forming mirror system, which consists of a quasi-elliptical mirror and two phase-correcting mirrors with non-quadratic surface contour, further calculations show that efficiencies of more than 94% have been achieved for converting the rotating high-order cylindrical cavity modes into the usable fundamental Gaussian mode. Low power (cold) measurements show a good agreement with theoretical predictions. This QO mode converter can be used for the broadband operation of a multi-frequency 1 MW gyrotron.  相似文献   

9.
The design of a 8mm TE 13 mode gyrotron is given in this paper. Discussions about the selection of the dimensions of the RF structure and electron gun are presented. Calculated results of the operating parameters of the gyrotron are also given. At 37.5GHz, pulse power 56kW is obtained for the gyrotron manufactured according to our design. Mode pattern obtained by scorching method shows that the mode of the output millimeter wave is TE 13.  相似文献   

10.
Gyrotron FU CW II with an 8 T liquid He free superconducting magnet, the second gyrotron of the THz Gyrotron FU CW Series, has been constructed and the operation test was successfully carried out. It will be used for enhancing the sensitivity of 600 MHz proton-NMR by use of Dynamic Nuclear Polarization (DNP). The designed operation mode of the gyrotron is TE2,6 at the second harmonic. The corresponding frequency is 394.6 GHz. The real operation frequency is 394.3 GHz at TE06 mode, because of fabrication error of the diameter of the cavity. The operation is in complete CW at the output power of around 30 W or higher at the TE06 cavity mode. There are many other operation modes at the fundamental and the second harmonic. Typical output power of the fundamental and the second harmonic are higher than 100 W and 20 W, respectively. The highest frequency observed up to the present is 443.5 GHz at the second harmonic operation of TE6,5 mode. The measured results are compared with the theoretical consideration.  相似文献   

11.
A mode converter with multi-waveguide output for millimeter wave gyro-device applications is proposed in this article, which is used to convert the TE01 circular waveguide mode into the TE10 rectangular waveguide mode. Computer simulations with Ansoft HFSS code show that the energy transmission coefficient of larger than 95.96% may be reached in the frequency range from 34.094 GHz to 35.8 GHz (a bandwidth of 1.706 GHz) at a VSWR of lower than 1.5 for the input operating mode.  相似文献   

12.
The paper presents an advanced method for and results of calculating main parameters of CW 170 GHz/1 MW gyrotrons operating at the TE28.7 and TE31.8 modes for ITER. Parameters are optimized to achieve maximum efficiency of the gyrotron with an acceptable Ohmic load on the cavity. Numerical modeling of starting up a gyrotron with an optimized cavity and processes of mode interaction are discussed.  相似文献   

13.
Gaussian optics can be used to design a quasi-optical system converting the TE06 mode output (f=388 GHz) of a submillimeter wave gyrotron into a well-collimated, linearly-polarized free-space beam with a circular cross-section. A quasi-optical antenna produces a main beam with an elliptical cross-section, which is then converted by two mirrors into a well-collimated beam with a circular cross-section.  相似文献   

14.
To provide the required mode selectivity for a megawatt 280 GHz gyrotron, a coaxial resonator operating in a high order TE mode is considered. Mode discrimination is achieved both by exploring the differences in the transverse structures of the competing modes and investigating a suitable geometry for the coaxial insert. For modes with close eigenfrequencies the associated diffractionQ factors can be widely different in value, thereby ensuring an effective mode selection. In the resonator studied here, the frequency separation between the design mode TE26,10,1 and its nearest competing mode TE20,12,1 is about 0.6% and the ratio of the correspondingQ factors is as high as 6.5. Unlike the coaxial resonator, in the hollow cavity without the inner conductor the fundamental spectrum of eigenfrequencies is more dense, and all TE modes within the frequency interval 271–288 GHz have approximately the sameQ factor.  相似文献   

15.
Long pulse operation up to 1 msec of a high frequency gyrotron with a pulse magnet has been successfully carried out in a frequency range including 1 THz. In the experiments, the timing of an electron beam pulse injection is adjusted at the top of the magnetic field pulse, where the variation of field intensity is negligible. The operation cavity modes seem to be TE1, 12 and TE4,12 at the second harmonics. The corresponding frequencies are 903 GHz and 1,013 GHz, respectively. Additionally several features of radiation measurement results of the gyrotron are described and brief considerations are presented.  相似文献   

16.
The quasi-optical mode converter for a frequency step-tunable gyrotron which consists of a dimpled-wall antenna (Denisov-type launcher) and a beam-forming mirror system has been optimized for 9 modes from TE17,6 at 105 GHz to TE23,8 at 143 GHz. The first mirror is a large quasi-elliptical focusing one; the second and third are phase-correcting mirrors with a non-quadratic shape of the surface. The results of calculations show that for these modes the Denisov-type launcher has a well-focused beam with low diffraction losses, and the radiation pattern presents an almost identical field shape for all modes considered. A multi-mode optimization of the phase-correcting mirrors with two different methods has been tested. The simulations show that the phase-correcting mirrors can be used for broadband operation in the frequency range from 105 GHz up to 143 GHz in the various design modes. This quasi-optical mode converter can achieve efficiencies of 94%-98% for converting the rotating high-order cylindrical cavity modes into the usable fundamental Gaussian mode.  相似文献   

17.
The RF behavior of high power, triple frequency (170-, 127.5-, and 85 GHz) gyrotron for fusion application is presented in this paper. The operating mode selection is discussed in detail for each corresponding frequencies and TE34,10, TE25,8 and TE17,5 modes are selected as the operating mode for 170 GHz, 127.5 GHz and 85 GHz operation of the device, respectively. The interaction cavity geometry and beam parameters are finalized by the cold cavity analysis and beam-wave interaction simulations. Considering the beam parameters and the beam launching positions in cavity (beam radius), the design of Magnetically Tunable MIG (MT-MIG) is also presented. Results of MT-MIG confirm the beam launching with desired beam parameters at the beam radius corresponding to the selected operating modes for all three frequencies. The CVD diamond window is also designed for RF power transmission. The beam-wave interaction simulations confirm more than 1 MW power at all three frequencies (170-, 127.5-, and 85 GHz).  相似文献   

18.
利用正余弦拟合的方法和半径渐变波导的耦合波理论设计出一种Ka波段TE01模回旋行波管新型输出渐变段。通过Matlab数值计算和HFSS仿真优化,研究了该新型渐变段的反射系数、传输参数、模式纯度、对杂模的耦合等性能指标。计算结果表明:在长度为80 mm、口径由14 mm变化到32 mm的情况下,在30~33 GHz该新型渐变段的传输参数大于-0.000 52 dB,反射参数小于-65 dB,模式纯度大于0.995,对TE02模和TE03模耦合在-40 dB以下。在等长度和等口径下,与Dolph-Chebyshev渐变段进行比较,结果显示在30~33 GHz内,新型渐变段比其传输参数更好、反射参数更小、模式纯度更高等。测试样品的冷测实验结果为在28~35 GHz范围内,其反射参数小于-30 dB,传输参数大于-0.3 dB。  相似文献   

19.
The replacement of conventional pulsed magnetic field coils previously used to generate the intra-cavity B-field with an 11T superconducting magnet is reported. The resulting more stable mm-wave output pulse is shown and the refurbishment requirements of both the field emission, field-immersed, cold cathode and Marx bank spark gaps demonstrated. This system proved to be tunable, oscillating from 20GHz up to 110GHz, with peak power levels of 450kW and 300kW respectively. Other operating parameters were also examined including mm-wave pulse length as a function of anode-cathode position. The pulse length increased from 87±6ns to 310±10ns with a 2.5 cm horizontal transit of the cathode away from the anode. A similar effect was witnessed with the increase of the intra-cavity B-field from 1.00T to 5.00T resulting in the mm-wave pulse duration increasing from 250±40ns. Second harmonic operation of the cavity resulted in 0.5kW of radiation observed at 96GHz. The pulse-to-pulse mm-wave stability coupled with the mode selectivity of the ohmic-Q-dominated cavity resulted in the identification of several oscillating modes including the TE12, cut-off frequency 21.1 GHz, the TE02, cut-off frequency 29.1 GHz, the TE35 at 74 GHz and the TE14,2, at 88GHz.  相似文献   

20.
The development of a millimeter and submillimeter wave catheter for irradiation on living bodies using a gyrotron as the radiation power source is described. The GYROTRON FU-IV, optimized for such applications was used in the development. It was operated in both CW and pulsed regime at TE03 and TE32 modes with frequencies 302 GHz and 238 GHz respectively. Irradiation tests were made on thermal papers, beefs and liver of living rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号