首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
AtT=79 K illumination effects with visible and UV light on the drain current were studied forn-channel enhancement-type MOS transistors. The results show that the response of photoelectric measurements is due to electron excitation from oxide states into the silicon surface layer (positive changes of drain current). The oxide states lying near the bottom of the silicon dioxide conduction band are distributed in energy. Oxide states having captured a hole can be discharged by electrons excited from the silicon conduction or valence band (negative changes of drain current) in combination with a tunneling process.  相似文献   

2.
3.
Thin films of the ordered vacancy compound CuIn5Se8 are deposited on glass substrates by multisource co-evaporation method and photoconductivity measurements are done on the films at various temperatures from 10 up to 300 K. The two photoactive bands that are identified in the spectral response spectra of CuIn5Se8 thin films at all measured temperatures are attributed to photoactive transitions between acceptor VCu to donor InCu and valence band to conduction band transitions respectively. From the spectra, a shift in band-to-band gap from 1.36 to 1.3 eV is observed with a temperature variation from 10 to 300 K. The non-exponential long-term decay observed in the transient photoconductivity spectra suggests a deep level trap-emptying process to be associated with the decay process and the decay constants are calculated by the differential life-time concept. From the steady state photocurrent analysis, a reduction in intergrain potential barrier on illumination has been noted as one reason for increase in conductivity on illumination. X-ray photoelectron spectroscopy analysis has been done to determine the binding energies of Cu, In and Se in the compound.  相似文献   

4.
The electrical transport properties and dielectric relaxation of Au/zinc phthalocyanine, ZnPC/Au devices have been investigated. The DC thermal activation energy at temperature region 400-500 K is 0.78 eV. The dominant conduction mechanisms in the device are ohmic conduction below 1 V and space charge limited conduction dominated by exponential trap distribution in potentials >1 V. Some parameters, such as concentration of thermally generated holes in valence band, the trap concentration per unit energy range at the valence band edge, the total concentration of traps and the temperature parameter characterizing the exponential trap distribution and their relation with temperatures have been determined. The AC electrical conductivity, σac, as a function of temperature and frequency has been investigated. It showed a frequency and temperature dependence of AC conductivity for films in the temperature range 300-400 K. The films conductivity in the temperature range 400-435 K increased with increasing temperature and it shows no response for frequency change. The dominant conduction mechanism is the correlated barrier hopping. The temperature and frequency dependence of real and imaginary dielectric constants and loss tangent were investigated.  相似文献   

5.
The spectra of lateral photoconductivity in selectively doped SiGe/Si: B heterostructures with a two-dimensional hole gas are analyzed. It is revealed that the lateral photoconductivity spectra of these heterostructures exhibit two signals opposite in sign. The positive signal of the photoconductivity is associated with the impurity photoconductivity in silicon layers of the heterostructures. The negative signal of the photoconductivity is assigned to the transitions of holes from the SiGe quantum well to long-lived states in silicon barriers. The position of the negative photoconductivity signal depends on the composition of the quantum well, and the energy of the low-frequency edge of this signal is in close agreement with the calculated band offset between the quantum-confinement level of holes in the quantum well and the valence band edge in the barrier.  相似文献   

6.
Surface photovoltage transients were measured at clean cleaved silicon (111) faces in ultrahigh vacuum. The temperature and doping of the samples, the intensity of the stimulating light pulses (energy less than band gap), and the surface coverage (clean and adsorbed water vapor) were varied systematically. The results yield information on the charge transfer at the surface and on surface recombination. The calculation of the surface photovoltage (using only the generation rates into and out of the surface states and data of thermal equilibrium) shows, that only one bulk band (conduction band for n-doped samples and valence band for p-doped samples) controls completely signal height and its relaxation via charge transfer to the surface states. The determined surface state parameters are: relaxation time constants, capture cross-sections for photons and transition probabilities. On the basis of the model all decay curves can be reproduced quantitatively.  相似文献   

7.
We report on the electronic transport properties of p-modulation Be-doped Ga0.8In0.2As/GaAs single quantum well. The experiments included the spectral photoluminescence between 8 and 300?K, and Hall effect measurements at temperatures between 14 and 300?K. The effect of strain which induces splitting of the valence band as light and heavy hole bands on transport is discussed. The calculated band alignment of the GaInAs sample using model-solid theory including strain effects indicates large conduction band discontinuities and a much smaller valance band discontinuity in GaInAs. The effect of the conduction and valance band discontinuity on the electronic transport properties is also discussed.  相似文献   

8.
《Physica B+C》1988,147(2-3):291-296
The spectral noise intensity of the drain current of an n-channel (100) Si-MOSFET in strong inversion was measured as a function of drain current and gate voltage at T = 4.2 K. In addition to flicker noise and white noise it was possible to distinguish a Lorentzian, which was due to generation-recombination noise. Since, at T = 4.2 K, the 2D-electron gas in the MOSFET in strong inversion is degenerate this generation-recombination noise must be caused by traps in the conduction band. The measured noise relaxation time was found to depend on drain current.Our results can be interpreted in terms of a generation-recombination process in which the generation is partly field-induced. Agreement between theory and experiment is within the experimental error, both for the way in which the inverse noise relaxation time depends on drain current and the way in which the ratio of the low frequency plateau of the spectral noise intensity to the noise relaxation time depends on the product of drain current and drain voltage. Measurements of the ratio of the low-frequency plateau of the spectral noise intensity to the relaxation time versus gate voltage at T = 4.2 K we used to construct an energy spectrum of the density of traps in the conduction band. A maximum is observed at about 14meV above the bottom of the conduction band.  相似文献   

9.
We demonstrate electron transport spectroscopy through a dopant atom array in n-doped silicon junctionless nanowire transistors within a temperature range from 6 K to 250 K. Several current steps are observed at the initial stage of the transfer curves below 75 K, which result from the electron transport from Hubbard bands to one-dimensional conduction band. The current-off voltages in the transfer curves have a strikingly positive shift below 20 K and a negative shift above 20 K due to the electrostatic screening induced by the ionized dopant atoms. There exists the minimum electron mobility at a critical temperature of 20 K, resulting from the interplay between thermal activation and impurity scattering. Furthermore, electron transport behaviors change from hopping conductance to thermal activation conductance at the temperature of 30 K.  相似文献   

10.
The electrical and magnetic properties of ZnSe single crystals containing disorder have been studied between temperatures 290K and 900K. The study of the magnetic properties has been extended to low temperatures (100K). Paramagnetism has been found to appear at high temperatures (460–900K). From the fact that this paramagnetism is proportional to eE/kT, it is suggested that localized states of single occupancy are created by thermal excitation. The study of the magnetic properties has been of help in ascertaining the nature of the transport (band conduction or hopping conduction) and in finding the hopping energy and excitation energy separately. It has also been shown from this that both band conduction and hopping conduction exist simultaneously in the sample. A study of the thermo electric power (t.e.p.) shows that below 450K current is carried by electrons in the conduction band and above by hopping of holes.  相似文献   

11.
The photoconductivity spectra of p-type silicon irradiated at ~15 °K with 1.2 MeV electrons were studied in the wavelength range from 1.2 to 5.5 μ at temperatures from 23 to 80 °K. The 3.9 μ photoconductivity band appears immediately after irradiation in all crystals already at low temperatures, giving further evidence that it is due to the divacancy formed directly during irradiation by electrons. Three main annealing stages of the photoconductivity have been observed; (a) below 160 °K, (b) 160–250 °K, and (c) 280–360 °K. A radiation-induced deep level at Ev , +(0.12±0.02 eV disappears upon annealing at stage b. The annealing behavior of the spectra depends strongly on the measuring temperature. The dependence of the spectra on chopper speed was also investigated.  相似文献   

12.
Yue-Bo Liu 《中国物理 B》2021,30(11):117302-117302
We report an abnormal phenomenon that the source-drain current (ID) of AlGaN/GaN heterostructure devices decreases under visible light irradiation. When the incident light wavelength is 390 nm, the photon energy is less than the band gaps of GaN and AlGaN whereas it can causes an increase of ID. Based on the UV light irradiation, a decrease of ID can still be observed when turning on the visible light. We speculate that this abnormal phenomenon is related to the surface barrier height, the unionized donor-like surface states below the surface Fermi level and the ionized donor-like surface states above the surface Fermi level. For visible light, its photon energy is less than the surface barrier height of the AlGaN layer. The electrons bound in the donor-like surface states below the Fermi level are excited and trapped by the ionized donor-like surface states between the Fermi level and the conduction band of AlGaN. The electrons trapped in ionized donor-like surface states show a long relaxation time, and the newly ionized donor-like surface states below the surface Fermi level are filled with electrons from the two-dimensional electron gas (2DEG) channel at AlGaN/GaN interface, which causes the decrease of ID. For the UV light, when its photon energy is larger than the surface barrier height of the AlGaN layer, electrons in the donor-like surface states below the Fermi level are excited to the conduction band and then drift into the 2DEG channel quickly, which cause the increase of ID.  相似文献   

13.
We show that the electric-field-induced thermal asymmetry between the electron and lattice systems in pure silicon substantially impacts the identity of the dominant spin relaxation mechanism. Comparison of empirical results from long-distance spin transport devices with detailed Monte?Carlo simulations confirms a strong spin depolarization beyond what is expected from the standard Elliott-Yafet theory even at low temperatures. The enhanced spin-flip mechanism is attributed to phonon emission processes during which electrons are scattered between conduction band valleys that reside on different crystal axes. This leads to anomalous behavior, where (beyond a critical field) reduction of the transit time between spin-injector and spin-detector is accompanied by a counterintuitive reduction in spin polarization and an apparent negative spin lifetime.  相似文献   

14.
In this paper, results of photoconductivity measurements on four EuO samples are given. Low frequency photoconductivity versus temperature (10°K < T < 300°K) and magnetic field H is investigated for two wavelengths: 6600 Å and 9000 Å. The photoconductivity kinetic is also described, and is characterized by a distribution in decay times. Temperature, magnetic field and carrier concentration have small effects on this kinetic. Quenching effect is obtained by adding a continuous illumination (λ2) to the weak modulated light (λ1). The kinetic is strongly affected by quenching and becomes more simple. Quenching effect is maximum for the wavelength associated to the 4?7–4?6 5d, transition. In contrast to the Penney-Kasuya[1] model we propose another one in which the conduction of equilibrium carriers as photo-excited carriers takes place in a broad band. The variation of low frequency photoconductivity versus temperature is attributed to the mobility variation. This variation agrees well with the model of mobility controlled by spin-disorder. The photoconductivity kinetic is interpreted by a three levels recombination model: the conduction band, the 4f levels and a distribution of trap levels. The lack of variation of photoconductivity decay in the range of metal-semiconductor transition is discussed.  相似文献   

15.
The temperature dependence of the electron-spin relaxation time in MgB2 is anomalous as it does not follow the resistivity above 150 K; it has a maximum around 400 K and decreases for higher temperatures. This violates the well established Elliot-Yafet theory of spin relaxation in metals. The anomaly occurs when the quasiparticle scattering rate (in energy units) is comparable to the energy difference between the conduction and a neighboring bands. The anomalous behavior is related to the unique band structure of MgB2 and the large electron-phonon coupling. The saturating spin relaxation is the spin transport analogue of the Ioffe-Regel criterion of electron transport.  相似文献   

16.
To investigate the mechanism of the stimulation and quenching of the green luminescence in ZnS: Cu, Al phosphors by infrared (IR) light of 0.7–1.5 μm, stimulation and quenching spectra, IR effects on time-resolved emission spectra, and IR-induced photoconductivity are measured at 4.2 K, 77 K, and room temperature. Both the stimulation and quenching are caused by the IR transitions ascribed to excited copper acceptors. It is concluded that the stimulation is induced by the process in which holes produced by IR light migrate among copper acceptors, so that the statistical distribution of the intrapair separations of excited copper-aluminum pairs are changed to shorter distances. It is found that at low temperatures the holes migrate from one copper acceptor to another without being thermally released to the valence band. It is confirmed that the quenching is caused by the recombination of holes released to the valence band with electrons in the conduction band via some kind of nonradiative recombination centers.  相似文献   

17.
The photocapacitive effects in CdS-crystals were investigated at frequencies between 60 Hz and 300 kHz and during the rise and the decay — also with thermal quenching — with temperatures between 5 and 80 °K. Measurements of the rise, decay, and thermal quenching were also performed on the photoconductivity. Both investigations had similar results regarding temperature dependence and time response. They are explained by the assumption of a photocapacitive effect by conduction in an impurity band — photoconductive effect of second kind — at temperatures below 40 °K with trap levels corresponding to 20–40°K.  相似文献   

18.
The low-temperature 2D variable range hopping conduction over the states of the upper Hubbard band is investigated in detail for the first time in multilayered Be-doped p-type GaAs/AlGaAs structures with quantum wells of 15-nm width. This situation was realized by doping the layer in the well and a barrier layer close to the well for the upper Hubbard band (A + centers) in the equilibrium state filled with holes. The conduction was of the Mott hopping type in the entire temperature range (4?0.4 K). The positive and negative magnetoresistance branches as well as of non-Ohmic hopping conduction at low temperature are analyzed. The density of states and the localization radius, the scattering amplitude, and the number of scatterers in the upper Hubbard band are estimated. It is found that the interference pattern of phenomena associated with hopping conduction over the A + band is qualitatively similar to the corresponding pattern for an ordinary impurity band, but the tunnel scattering is relatively weak.  相似文献   

19.
The temperature dependence of the hopping conductivity and the relaxation kinetics of the transient current in porous amorphous silicon are investigated after treatment in a hydrogen plasma at 200 °C. It is discovered that posthydrogenation of the material increases the dimension of the conducting channel from 2.5 to 3, while suppressing and slowing the relaxation of the transient current. The results obtained are attributed to passivation of the electrically active dangling bonds on the pore surface by hydrogen. It is concluded that electron transport in porous amorphous silicon in the temperature range T>T*, where T* lies in the range 130–270 K and depends on the density of states, takes place between superlocalized states of the internal surface, which is enriched with dangling bonds and acts as a fractal percolation system. When the temperature is lowered below T*, a transition to one-dimensional hopping conduction in the bulk silicon regions occurs. Zh. éksp. Teor. Fiz. 112, 926–935 (September 1997)  相似文献   

20.
The temperature dependent Hall effect and resistivity measurements of Si δ-doped GaAs are performed in a temperature range of 25–300 K. The temperature dependence of carrier concentration shows a characteristic minimum at about 200 K, which indicates a transition from the conduction band conduction to the impurity band conduction. The temperature dependence of the conductivity results are in agreement with terms due to conduction band conduction and localized state hopping conduction in the impurity band. It is found that the transport properties of Si δ-doped GaAs are mainly governed by the dislocation scattering mechanism at high temperatures. On the other hand, the conductivity follows the Mott variable range hopping conduction (VRH) at low temperatures in the studied structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号