首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The kinetics of transmetallation of [Mn(nota)](-) and [Mn(dota)](2-) was investigated in the presence of Zn(2+) (5-50-fold excess) at variable pH (3.5-5.6) by (1)H relaxometry. The dissociation is much faster for [Mn(nota)](-) than for [Mn(dota)](2-) under both experimental and physiologically relevant conditions (t(?) = 74 h and 1037 h for [Mn(nota)](-) and [Mn(dota)](2-), respectively, at pH 7.4, c(Zn(2+)) = 10(-5) M, 25 °C). The dissociation of the complexes proceeds mainly via spontaneous ([Mn(nota)](-)k(0) = (2.6 ± 0.5) × 10(-6) s(-1); [Mn(dota)](2-)k(0) = (1.8 ± 0.6) × 10(-7) s(-1)) and proton-assisted pathways ([Mn(nota)](-)k(1) = (7.8 ± 0.1) × 10(-1) M(-1) s(-1); [Mn(dota)](2-)k(1) = (4.0 ± 0.6) × 10(-2) M(-1) s(-1), k(2) = (1.6 ± 0.1) × 10(3) M(-2) s(-1)). The observed suppression of the reaction rates with increasing Zn(2+) concentration is explained by the formation of a dinuclear Mn(2+)-L-Zn(2+) complex which is about 20-times more stable for [Mn(dota)](2-) than for [Mn(nota)](-) (K(MnLZn) = 68 and 3.6, respectively), and which dissociates very slowly (k(3)~10(-5) M(-1) s(-1)). These data provide the first experimental proof that not all Mn(2+) complexes are kinetically labile. The absence of coordinated water makes both [Mn(nota)](-) and [Mn(dota)](2-) complexes inefficient for MRI applications. Nevertheless, the higher kinetic inertness of [Mn(dota)](2-) indicates a promising direction in designing ligands for Mn(2+) complexation.  相似文献   

2.
The photodissociation of manganese oxide cluster cations Mn(N)O+ (N = 2-5), into Mn(N-1)O+ (one-atom loss) and Mn(N-2)O+ (two-atom), was investigated in the photon-energy range of 1.08-2.76 eV. The bond-dissociation energies D0(Mn(N-1)O+...Mn) for N = 3, 4, and 5 were determined to be 1.84+/-0.03, 0.99+/-0.05, and 1.25+/-0.14 eV, respectively, from the threshold energies for the one- and two-atom losses. As Mn2O+ did not dissociate even at the highest photon energy used, the bond dissociation energy of Mn2O+, D0(Mn+...MnO), was obtained from a density-functional-theory calculation to be 3.04 eV. The present findings imply that the core ion Mn2O+ is bound weakly with the rest of the manganese atoms in Mn(N)O+.  相似文献   

3.
Reported is a time-resolved infrared and optical kinetics investigation of the transient species CH(3)C(O)Mn(CO)(4) (I(Mn)) generated by flash photolysis of the acetyl manganese pentacarbonyl complex CH(3)C(O)Mn(CO)(5) (A(Mn)) in cyclohexane and in tetrahydrofuran. Activation parameters were determined for CO trapping of I(Mn) to regenerate A(Mn) (rate = k(CO) [CO][I(Mn)]) as well as the methyl migration pathway to form methylmanganese pentacarbonyl CH(3)Mn(CO)(5) (M(Mn)) (rate = k(M)[I(Mn)]). These values were Delta H(++)(CO) = 31 +/- 1 kJ mol(-1), Delta S(++)(CO) = -64 +/- 3 J mol(-1) K(-1), Delta H(++)(M) = 35 +/- 1 kJ mol(-1), and Delta S(++)(M) = -111 +/- 3 J mol(-1) K(-1). Substantially different activation parameters were found for the methyl migration kinetics of I(Mn) in THF solutions where Delta H(++)(M) = 68 +/- 4 kJ mol(-1) and Delta S(++)(M) = 10 +/- 10 J mol(-1) K(-1), consistent with the earlier conclusion (Boese, W. T.; Ford, P. C. J. Am. Chem. Soc. 1995, 117, 8381-8391) that the composition of I(Mn) is different in these two media. The possible isotope effect on k(M) was also evaluated by studying the intermediates generated from flash photolysis of CD(3)C(O)Mn(CO)(5) in cyclohexane, but this was found to be nearly negligible (k(M)(h)/k(M)(d) (298 K) = 0.97 +/- 0.05, Delta H(++)(M)(d) = 37 +/- 4 kJ mol(-1), and Delta S(++)(M)(d) = -104 +/- 12 J mol(-1) K(-1)). The relevance to the migratory insertion mechanism of CH(3)Mn(CO)(5), a model for catalytic carbonylations, is discussed.  相似文献   

4.
Moya HD  Neves EA  Coichev N 《Talanta》1997,44(5):797-803
The evidences of spontaneous oxidation of Mn(II) by the dissolved oxygen in azide buffer medium, which is dependent on the N (-)(3)HN (3) concentration, suggested a formation of stable Mn(III) complexes due to marked colour changes. Spectrophotometric studies combined with coulometric generation of Mn(III), in presence of large excess of Mn(II), showed a maximum absorbance peak at 432 nm. The molar absorptivity increases with azide concentration (0.44-3.9 mol 1(-1)) from 3100 to 6300 mol(-1) 1 cm(-1), showing a stepwise complex formation. Potential measurements of the Mn(III) Mn(II) system in several azide aqueous buffers solutions: 1.0 x 10(-2) mol 1(-1) HN(3), (0.50-2.0 mol 1(-1)) N(-)(3) and 5.0 x 10(-2) mol 1(-1) Mn(II) and constant ionic strength 2.0 mol 1(-1), kept with sodium perchlorate, leads to the conditional potential, E(0')x, in several azide concentrations at 25.0 +/- 0.1 degrees C. Considering the overall formation constants of Mn(II) N (-)(3), from former studies, and the potential, E(0')s = 1.063 V versus SCE, for Mn(III) Mn(II) system in non-complexing media, it was possible to calculate the Fronaeus function, F(0)(L), and the following overall formation constants: beta(1) = 1.2 x 10(5) M(-1), beta(2) = 6.0 x 10(8) M(-2), beta(3) = (2.4 +/- 0.7) x 10(11) M(-3), beta(4) = (1.5 +/- 0.5) x 10(11) M(-4) and beta(5) = (9.6 +/- 0.8) x 10(11) M(-5) for the Mn(III) N (-)(3) complexes. These data give important support to understand the importance of Mn(II) and Mn(III) synergistic effect on the analytical method of S(IV) determination based on the Co(II) autoxidation.  相似文献   

5.
Four mixed-valent (Mn(IV)Mn(III)(6)Mn(II)(6)) tridecanuclear Mn clusters [Mn(13)O(8)(OH)(6)(ndc)(6)] (1), [Mn(13)O(8)(OEt)(5)(OH)(ndc)(6)] (2), [Mn(13)O(8)(O(2)CPh)(12)(OEt)(6)] (3), and [Mn(13)O(8)(OMe)(6)(ndc)(6)] (4) are reported, where ndcH(2) is 1,8-naphthalenedicarboxylic acid. This is the first use of the latter in Mn chemistry. Complexes 1-3 are essentially isostructural and possess a central core composed of three layers. The middle layer consists of a Mn(II)(6) hexagon containing a central Mn(IV) atom, and above and below this are Mn(III)(3) triangular units. These core Mn atoms are held together by a combination of O(2-), RO(-), or HO(-) bridging groups. The overall metal topology is an unusual one, with the overall geometry being a metal-centered cuboctahedron (heptaparallelohedron). Variable-temperature, solid-state dc, and ac magnetization studies were carried out on complexes 1-4 in the 5.0-300 K range. Compound 1 was found to possess an S = 9/2 ground-state spin, whereas 2, 3, and 4 have an S = 11/2 ground state. Fitting of the magnetization (M) versus field (H) and temperature (T) data by matrix diagonalization and including only axial zero-field splitting, D, gave D = -0.14 cm(-1) for 1. High-frequency EPR studies were carried out on single crystals of 1.xDMF, and these confirmed D to be very small, that is, 1 is essentially isotropic. The combined work demonstrates the ligating ability of 1,8-naphthalenedicarboxylate, notwithstanding its robust organic backbone and the restricted parallel disposition of its two carboxylate moieties, and its usefulness in the synthesis of new polynuclear Mn(x) clusters. The work also demonstrates a sensitivity of the ground-state spin in this Mn(13) family of complexes to relatively small structural perturbations, while the high-frequency EPR study demonstrated the magnetically isotropic nature of the Mn(13) core.  相似文献   

6.
The reaction of Mn(III) salen-type complexes with di- and tetraanionic α-Keggin-type polyoxometalates (POMs) was performed, and three types of Coulombic aggregations containing Mn(III) out-of-plane dimeric units (abbreviated as [Mn(2)](2+)) that are potentially single-molecule magnets (SMMs) with an S(T) = 4 ground state were synthesized: [Mn(2)(5-MeOsaltmen)(2)(acetone)(2)][SW(12)O(40)] (1), [Mn(2)(salen)(2)(H(2)O)(2)](2)[SiW(12)O(40)] (2), and [Mn(5-Brsaltmen)(H(2)O)(acetone)](2)[{Mn(2)(5-Brsaltmen)(2)}(SiW(12)O(40))] (3), where 5-Rsaltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(5-R-salicylideneiminate) with R = MeO (methoxy), Br (bromo) and salen(2-) = N,N'-ethylenebis(salicylideneiminate). Compound 1 with a dianionic POM, [SW(12)O(40)](2-), is composed of a 1:1 aggregating set of [Mn(2)](2+)/POM, and 2, with a tetraanionic POM, [SiW(12)O(40)](4-), is a 2:1 set. Compound 3 with [SiW(12)O(40)](4-) forms a unique 1D coordinating chain with a [-{Mn(2)}-POM-](2-) repeating unit, for which a hydrogen-bonded dimeric unit ([Mn(5-Brsaltmen)(H(2)O)(acetone)](2)(2+)) is present as a countercation. Independent of the formula ratio of [Mn(2)](2+)/POM, Mn(III) dimers and POM units in 1-3 form respective segregated columns along a direction of the unit cell, which make an alternate packing to separate evenly identical species in a crystal. The nearest intermolecular Mn···Mn distance is found in the order 2 < 3 < 1. The segregation of the [Mn(2)](2+) dimer resulted in interdimer distances long enough to effectively reduce the intermolecular magnetic interaction, in particular in 1 and 3. Consequently, an intrinsic property, SMM behavior, of Mn(III) dimers has been characterized in this system, even though the interdimer interactions are still crucial in the case of 2, where a long-range magnetic order competitively affects slow relaxation of the magnetization at low ac frequencies.  相似文献   

7.
We have computed the electronic and geometrical structures of thirteen atom manganese clusters in all three charge states, Mn(13) (-), Mn(13) (+), and Mn(13) by using density functional theory with the generalized gradient approximation. Our results for Mn(13) (-) are compared with our anion photoelectron spectrum of Mn(13) (-), published in this paper. Our results for Mn(13) (+) are compared with the previously published photoionization results of Knickelbein [J. Chem. Phys. 106, 9810 (1997)]. There is a good agreement between theoretical and experimental values of ionization and electron attachment energies.  相似文献   

8.
The reaction between Mn(6)L(12) and Mg(6)L(12) (L = N,N-diethylcarbamate) results in isolation of heteronuclear complexes Mn(n)Mg(6)(-)(n)L(12). A series was prepared with different doping factors n by varying the Mn/Mg ratio in the crystallization solutions. Single-crystal X-ray diffraction shows that MnMg(5)L(12) is isostructural with Mn(6)L(12) and Mg(6)L(12). Magnetic susceptibility data on the series Mn(n)Mg(6)(-)(n)L(12) (n = 1-6) are consistent with antiferromagnetic Mn.Mn interactions. At low n, the magnetic data demonstrate the formation of magnetically isolated Mn(2+) centers. This was confirmed by measurement of the EPR spectrum at a doping factor n = 0.06 in solution, as a powder, and as single crystals. These show hyperfine interactions consistent with isolated Mn(2+). The EPR spectrum of Mn(0.06)Mg(5.94)L(12) exhibits a dominant signal at g(eff) = 4, and a wide series of less intense signals spanning 200-6000 G in the X-band regime. This unusual behavior in a weak-field Mn(2+) complex is attributed to the substantial distortions from cubic ligand field geometry in this system. The g(eff) = 4 signals are attributed to a C(2)-symmetric hexacoordinate Mn(2+) ion with D > 0.3 cm(-)(1) and E/D = 0.33. The wide series is assigned to an axial C(4)(v) pentacoordinate Mn(2+) site with D = 0.05 cm(-)(1). Comparison of the g(eff) = 4 signals to the g = 4.1 signals exhibited by the tetramanganese complex in photosystem II belies the fact that they almost certainly arise from different spin systems. In addition, the similarity of the spectrum of Mn(n)Mg(6)(-)(n)L(12) to mononuclear Mn(4+) complexes suggests that considerable care must be exercised in the use of EPR as a fingerprint for the manganese oxidation state, particularly in manganese proteins where molecular composition may not be precisely established.  相似文献   

9.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

10.
The reactions of [Mn3O(O2CCCl3)6(H2O)3] with 1-phenyl-3-(2-pyridyl)propane-1,3-dione (HL(1)) and 1-(2-pyridly)-3-(p-tolyl)propane-1,3-dione (HL(2)) in CH2Cl2 afford the mixed-valence Mn(II)2Mn(III)2 tetranuclear complexes [Mn4O(O2CCCl3)6(L(1))2] (1) and [Mn4O(O2CCCl3)6L2(2)] (2), respectively. Similar reactions employing [Mn3O(O2CPh)6(H2O)(py)2] with HL(1) and HL(2) give the Mn(II)3Mn(III)3 hexanuclear complexes [Mn6O2(O2CPh)8(L(1))3] (3) and [Mn6O2(O2CPh)8L3(2)] (4), respectively. Complexes 1.2CH2Cl2, 2.2CH2Cl2.H2O, 3.1.5CH2Cl2.Et2O.H2O, and 4.2CH2Cl2 crystallize in the triclinic space group P1, monoclinic space group P2(1)/c, monoclinic space group P2 1/ n, and monoclinic space group P2(1)/n, respectively. Complexes 1 and 2 consist of a trapped-valence tetranuclear core of [Mn(II)2Mn(III)2(mu4-O)](8+), and complexes 3 and 4 represent a new structural type, possessing a [Mn(II)3Mn(III)3(mu4-O)2](11+) core. The magnetic data indicate that complexes 3 and 4 have a ground-state spin value of S = 7/2 with significant magnetoanisotropy as gauged by the D values of -0.51 cm (-1) and -0.46 cm (-1), respectively, and frequency-dependent out-of-phase signals in alternating current magnetic susceptibility studies indicate their superparamagnetic behavior. In contrast, complexes 1 and 2 are low-spin molecules with an S = 1 ground state. Single-molecule magnetism behavior confirmed for 3 the presence of sweep-rate and temperature-dependent hysteresis loops in single-crystal M versus H studies at temperatures down to 40 mK.  相似文献   

11.
[(OH(2))(R-terpy)Mn(μ-O)(2)Mn(R-terpy)(OH(2)) ](3+) (R-terpy = 4'-substituted 2,2':6',2″-terpyridine, R = butoxy (BuO), propoxy (PrO), ethoxy (EtO), methoxy (MeO), methyl (Me), methylthio (MeS), chloro (Cl)) have been synthesized as a functional oxygen-evolving complex (OEC) model and characterized by UV-vis and IR spectroscopic, X-ray crystallographic, magnetometric, and electrochemical techniques. The UV-vis spectra of derivatives in water were hardly influenced by the 4'-substituent variation. X-ray crystallographic data showed that Mn centers in the Mn(III)(μ-O)(2)Mn(IV) cores for derivatives with R = H, MeS, Me, EtO, and BuO are crystallographically indistinguishable, whereas the derivatives with R = MeO and PrO gave the significantly distinguishable Mn centers in the cores. The indistinguishable Mn centers could be caused by rapid electron exchange between the Mn centers to result in the delocalized Mn(μ-O)(2)Mn core. The exchange integral values (J = -196 to -178 cm(-1)) for delocalized cores were lower than that (J = -163 to -161 cm(-1)) for localized cores, though the Mn···Mn distances are nearly the same (2.707-2.750 ?). The half wave potential (E(1/2)) of a Mn(III)-Mn(IV)/Mn(IV)-Mn(IV) pair of the derivatives decreased with an increase of the electron-donating ability of the substituted groups for the delocalized core, but it deviated from the correlation for the localized cores. The catalytic activities of the derivatives on mica for heterogeneous water oxidation were remarkably changed by the substituted groups. The second order rate constant (k(2)/mol(-1) s(-1)) for O(2) evolution was indicated to be correlated to E(1/2) of a Mn(III)-Mn(IV)/Mn(IV)-Mn(IV) pair; k(2) increased by a factor of 29 as E(1/2) increased by 28 mV.  相似文献   

12.
The reactions of appropriate ratios of K2TeO3 and [Mn2(CO)10)] in superheated methanol solutions lead to a series of novel cluster anions [Te4Mn3(CO)10] (1), [Te2Mn3(CO)9]2- (2), [Te2Mn3(CO)9]- (3), and [Te2Mn4(CO)12]2- (4). When cluster 1 is treated with [Mn2(CO)10]/KOH in methanol, paramagnetic cluster 2 is formed in moderate yield. Cluster 2 is oxidized by [Cu(MeCN)4]BF4 to give the closo-cluster [Te2Mn3(CO)9]- (3), while treatment of 2 with [Mn2(CO)10]/KOH affords the closo-cluster 4. IR spectroscopy showed that cluster 1 reacted with [Mn2(CO)10] to give cluster 4 via cluster 2. Clusters 1-4 were structurally characterized by spectroscopic methods or/and X-ray analyses. The core structure of 1 can be described as two [Mn(CO)3] groups doubly bridged by two Te2 fragments in a mu2-eta2 fashion. Both [Mn(CO)3] groups are further coordinated to one [Mn(CO)4] moiety. Cluster 2 is a 49 e- species with a square-pyramidal core geometry. While cluster 3 displays a trigonal-bipyramidal metal core, cluster 4 possesses an octahedral core geometry.  相似文献   

13.
Saha A  Abboud KA  Christou G 《Inorganic chemistry》2011,50(24):12774-12784
The syntheses, crystal structures, and magnetochemical characterization are reported for the new mixed-valent Mn clusters [Mn(2)(II)Mn(III)(O(2)CMe)(2)(edteH(2))(2)](ClO(4)) (1), [Mn(II)(2)Mn(III)(2)(edteH(2))(2)(hmp)(2)Cl(2)](Mn(II)Cl(4)) (2), [Mn(III)(6)O(2)(O(2)CBu(t))(6)(edteH)(2)(N(3))(2)] (3), [Na(2)Mn(III)(8)Mn(II)(2)O(4)(OMe)(2)(O(2)CEt)(6)(edte)(2)(N(3))(6)] (4), and (NEt(4))(2)[Mn(8)(III)Mn(2)(II)O(4)(OH)(2)-(O(2)CEt)(6)(edte)(2)(N(3))(6)](5), where edteH(4) is N,N,N',N'-tetrakis-(2-hydroxyethyl)ethylenediamine and hmpH is 2-(hydroxymethyl)pyridine. 1-5 resulted from a systematic exploration of the effect of different Mn sources, carboxylates, the presence of azide, and other conditions, on the Mn/edteH(4) reaction system. The core of 1 consists of a linear Mn(II)Mn(III)Mn(II) unit, whereas that of 2 is a planar Mn(4) rhombus within a [Mn(II)(2)Mn(III)(2)(μ(3)-OR)(2)] incomplete-dicubane unit. The core of 3 comprises a central [Mn(III)(4)(OR)(2)] incomplete-dicubane on either side of which is edge-fused a triangular [Mn(III)(3)(μ(3)-O)] unit. The cores of 4 and 5 are similar and consist of a central [Mn(II)(2)Mn(III)(2)(μ(3)-OR)(2)] incomplete-dicubane on either side of which is edge-fused a distorted [Mn(II)Mn(III)(3)(μ(3)-O)(2)(μ(3)-OR)(2)] cubane unit. Variable-temperature, solid-state direct current (dc) and alternating current (ac) magnetization studies were carried out on 1-5 in the 5.0-300 K range, and they established the complexes to have ground state spin values of S = 3 for 1, S = 9 for 2, and S = 4 for 3. The study of 3 provided an interesting caveat of potential pitfalls from particularly low-lying excited states. For 4 and 5, the ground state is in the S = 0-4 range, but its identification is precluded by a high density of low-lying excited states.  相似文献   

14.
The reaction between Mn(ClO 4) 2 and di-(2-pyridyl)-ketone in the presence of the sodium salt of propanediol as a base in MeOH leads to the formation of a hexanuclear manganese cluster. This cluster has been characterized by the formula [Mn(II) 3Mn(III) 3O(OH)(CH 3pdol) 3(Hpdol) 3(pdol)](ClO 4) 4 ( 1). Molecular conductance measurements of a 10 (-3) M solution of compound 1 in CH 3CN, DMSO, or DMF give Lambda m = 529, 135, or 245 muS/cm, respectively, which suggests a 1:4 cation/anion electrolyte. The crystal structure of hexanuclear manganese cluster 1 consists of two distinct trinuclear units with a pseudocubane-like arrangement. The trinuclear units show two different valence distributions, Mn(II)/Mn(III)/Mn(II) and Mn(III)/Mn(II)/Mn(III). Additional features of interest for the compound include the fact that (a) two of the Mn(III) ions show a Jahn-Teller elongation, whereas the third ion shows a Jahn-Teller compression; (b) one bridge between Mn(III) atoms is an oxo (O (2-)) ion, whereas the bridge between Mn(II) and Mn(III) is a hydroxyl (OH (-)) group; and (c) the di-(2-pyridyl)-ketone ligand that is methanolyzed to methyl-Hpdol and R 2pdol (R = CH 3, H) acts in three different modes: methyl-pdol(-1), Hpdol(-1), and pdol(-2). For magnetic behavior, the general Hamiltonian formalism considers that (a) all of the interactions inside the two "cubanes" between Mn(II) and Mn(III) ions are equal to the J 1 constant, those between Mn(II) ions are equal to the J 2 constant, and those between the Mn(III) ions are equal to the J 3 constant and (b) the interaction between the two cubanes is equal to the J 4 constant. The fitting results are J 1 = J 2 = 0.7 cm (-1), J 3 approximately 0.0, J 4 = -6.2 cm (-1), and g = 2.0 (fixed). According to these results, the ground state is S = 1/2, and the next excited states are S = 3/2 and 5/2 at 0.7 and 1.8 cm (-1), respectively. The EPR spectra prove that the spin ground state at a low temperature is not purely S = 1/2 but is populated with the S = 3/2 state, which is in accordance with the susceptibility and magnetization measurements.  相似文献   

15.
High-field and frequency electron paramagnetic resonance (HFEPR) of solid (8,12-diethyl-2,3,7,13,17,18-hexamethylcorrolato)manganese(III), 1, shows that in the solid state it is well described as an S = 2 (high-spin) Mn(III) complex of a trianionic ligand, [Mn(III)C(3)(-)], just as Mn(III) porphyrins are described as [Mn(III)P(2)(-)](+). Comparison among the structural data and spin Hamiltonian parameters reported for 1, Mn(III) porphyrins, and a different Mn(III) corrole, [(tpfc)Mn(OPPh(3))], previously studied by HFEPR (Bendix, J.; Gray, H. B.; Golubkov, G.; Gross, Z. J. Chem. Soc., Chem. Commun. 2000, 1957-1958), shows that despite the molecular asymmetry of the corrole macrocycle, the electronic structure of the Mn(III) ion is roughly axial. However, in corroles, the S = 1 (intermediate-spin) state is much lower in energy than in porphyrins, regardless of axial ligand. HFEPR of 1 measured at 4.2 K in pyridine solution shows that the S = 2 [Mn(III)C(3)(-)] system is maintained, with slight changes in electronic parameters that are likely the consequence of axial pyridine ligand coordination. The present result is the first example of the detection by HFEPR of a Mn(III) complex in solution. Over a period of hours in pyridine solution at ambient temperature, however, the S = 2 Mn(III) spectrum gradually disappears leaving a signal with g = 2 and (55)Mn hyperfine splitting. Analysis of this signal, also observable by conventional EPR, leads to its assignment to a manganese species that could arise from decomposition of the original complex. The low-temperature S = 2 [Mn(III)C(3)(-)] state is in contrast to that at room temperature, which is described as a S = 1 system deriving from antiferromagnetic coupling between an S = (3/2) Mn(II) ion and a corrole-centered radical cation: [Mn(II)C(*)(2-)] (Licoccia, S.; Morgante, E.; Paolesse, R.; Polizio, F.; Senge, M. O.; Tondello, E.; Boschi, T. Inorg. Chem. 1997, 36, 1564-1570). This temperature-dependent valence state isomerization has been observed for other metallotetrapyrroles.  相似文献   

16.
Aggregation of tetranuclear Mn(4)O(2) building blocks with alkali ion was studied. Several Mn(iii) complexes containing [Mn(4)O(2)(AcO)(7)(pyz)(2)](-) (pyz = pyrazinate) anion(s) were obtained from an assembly system containing Mn(ii), MnO(4)(-), HOAc and Hpyz (Napyz or Kpyz). These [Mn(4)O(2)](8+) complexes have monomeric (1 and 2), dimeric (4 and 5) and one-dimensional chain () structures of which alkali metal ion connects the Mn ions of adjacent [Mn(4)O(2)](8+) units through mu(1,1)- and mu(1,3)-carboxylate bridges. Complexes 2 or 3 were converted into [Mn(12)O(12)(AcO)(16)(H(2)O)(4)] in EtOH solution in the presence of HOAc. However, in MeOH solution, a coordination polymer [Mn(2)(HCOO)(4)(H(2)O)(4)](n) was obtained accompanying the oxidation of MeOH to become HCHO and HCOOH. Tracing the (1)H NMR spectra of 2 or 3 in CD(3)OD, the disappearance of the resonance signals in 3 h indicated the decomposition of the [Mn(4)O(2)](8+) cores. Complex 2 exhibits its proton NMR signals in CDCl(3) which are similar to those of its pic analogue but accompany downfield shift to various extents for all the corresponding signals. Variable-temperature magnetic susceptibilities of complexes 2-5 in the range 5-300 K were recorded and were fitted for an Mn(4)O(2) butterfly core, giving the fitting parameters J(bb) = -2.67 to -3.76 cm(-1) and J(wb) = -1.16 to -3.14 cm(-1). Small J values indicate weak antiferromagnetic coupling interactions of the Mn(iii) sites and the spin ground states are considered as S(T) = 0 based on the J(bb)/J(wb) ratio approximately 1 for these complexes. The ESR spectra were recorded for complex 2 in dual-mode at liquid-helium temperatures and no obvious signal could be found. The addition of p-cresol gives rise to the reduction of the [Mn(4)O(2)](8+), resulting in observable signals.  相似文献   

17.
The magnetic behavior of the pentanuclear complex of formula Mn(II)(O(2)CCH(3))(2)[12-MC(Mn(III)(N)shi)-4](DMF)(6), 1, was investigated using magnetization and magnetic susceptibility measurements both in the solid state and in solution. Complex 1 has a nearly planar structure, made of a central Mn(II) ion surrounded by four peripheral Mn(III) ions. Solid state variable-field dc magnetic susceptibility experiments demonstrate that 1 possesses a low value for the total spin in the ground state; fitting appropriate expressions to the data results in antiferromangetic coupling both between the peripheral Mn(III) ions (J = -6.3 cm(-1)) and between the central Mn(II) ion and the Mn(III) ones (J' = -4.2 cm(-1)). In order to obtain a reasonable fit, a relatively large single ion magnetic anisotropy (D) value of 1 cm(-1) was necessary for the central Mn(II) ion. The single crystal magnetization measurements using a microsquid array display a very slight opening of the hysteresis loop but only at a very low temperature (0.04 K), which is in line with the ac susceptibility data where a slow relaxation of the magnetization occurs just around 2 K. In frozen solution, complex 1 displays a frequency dependent ac magnetic susceptibility signal with an energy barrier to magnetization reorientation (E) and relaxation time at an infinite temperature (τ(o)) of 14.7 cm(-1) and 1.4 × 10(-7) s, respectively, demonstrating the single molecule magnetic behavior in solution.  相似文献   

18.
The coordination properties of the new polynucleating ligand H(3)L1 (1,3-bis(3-oxo-3-phenylpropionyl)-2-hydroxy-5-methylbenzene) with Mn(II/III) are described. Depending on the solvent used, the reaction of H(3)L1 with Mn(OAc)(2) yields either of the two new multinuclear assemblies [Mn(2)(HL1)(2)(py)(4)] (1) and [Mn(3)(HL1)(3)] (2), as revealed by X-ray crystallography. The structure of 2 is remarkable in that it shows a unique asymmetric triple-stranded helicate. Complexes 1 and 2 can be interconverted by controlling the solvent of the reaction system, and therefore, this ensemble constitutes an interesting externally addressable switch. In the presence of Mn(III)/pyridine, partial degradation of H(3)L1 occurs via oxidative cleavage, and the new complex [Mn(2)(L2)(2)(py)(4)] (3) is formed. The crystal structure of this complex has shown the fully deprotonated form of the new donor H(3)L2 (3-(3-oxo-3-phenylpropionyl)-5-methylsalicylic acid). From the same reaction, the Mn(II) complex 1 is also obtained. A rational synthesis of H(3)L2 is reported, and this has been used to prepare 3 in high yields, directly from its components. Variable-temperature magnetic susceptibility (chi(m)) measurements were performed on complexes 1-3 under a magnetic field of 1 kG. The data for each complex were fit to the appropriate chi(m) vs T theoretical equation, respectively. In 1, the Mn(II) ions are uncoupled, with g = 2.01. The data from 2 were fit by assuming the presence of an exchange coupled Mn(II)...Mn(II) pair next to a magnetically isolated Mn(II) center. The fit gave J = -2.75 cm(-1), g(12) = 1.97, and g(3) = 1.92, respectively. In 3, two models fit the experimental data. In the most satisfactory, the Mn(III) ions are coupled antiferromagnetically with J = -1.48 cm(-1) and g = 1.98 and a term for weak ferromagnetic intermolecular exchange is included with zJ' = 0.39 cm(-1). The other model contemplates the presence of two uncoupled zero field split Mn(III) ions.  相似文献   

19.
Two manganese(III) tetradentate Schiff-base dimers to which N,N'-dicyano-1,4-naphthoquinonediiminate (DCNNQI) radicals are attached have been selectively synthesized by varying the solvents used in the reactions: [Mn2(5-MeOsaltmen)2(DCNNQI)2].MeOH (1) and [Mn2(5-MeOsaltmen)(2)(DCNNQI)(2)] x 2CH2Cl2.2CH3CN (2) [5-MeOsaltmen2- = N,N'-(1,1,2,2-tetramethylethylene)bis(5-methoxysalicylideneiminate)]. These two complexes share the same molecular core, [(DCNNQI.-)-Mn(III)-(O)2-Mn(III)-(DCNNQI.-)], where -(O)2- is a biphenolate bridge in the out-of-plane dimerized [Mn(2)(5-MeOsaltmen)2]2+ moiety. However, their packing arrangements are completely different. Whereas complex 1 is found to be relatively isolated, strong intermolecular dimerization of the DCNNQI moieties (with the nearest contact being approximately 3.0 A) is observed in 2, forming a one-dimensional chain of [-Mn(III)-(O)2-Mn(III)-(DCNNQI.-)2-](infinity). The magnetic susceptibility of 1 can be modeled with an [S = 1/2, 2, 2, 1/2] four-spin system including strong antiferromagnetic Mn(III)/DCNNQI radical coupling (J(Mn/rad)/kB = -23 K) and ferromagnetic Mn(III)/Mn(III) coupling through the biphenolate bridge (J(Mn/Mn)/kB = +2.0 K). These interactions lead to an ST = 3 ground state that possesses significant uniaxial anisotropy (D(S=3)/kB = -2.1 K). Low-temperature ac and dc magnetic data of 1 reveal its single-molecule magnet behavior with quantum tunneling of the magnetization. By contrast, 2 possesses the diamagnetic ground state induced by dominating Mn(III)-Mn(III) antiferromagnetic interactions mediated by the diamagnetic DCNNQI dimers and/or pi-pi contact along the b axis.  相似文献   

20.
The reaction of [Mn(3)O(O(2)CMe)(6)(py)(3)](ClO(4)) (1; 3Mn(III)) with [Mn(10)O(4)(OH)(2)(O(2)CMe)(8)(hmp)(8)](ClO(4))(4) (2; 10Mn(III)) in MeCN affords the new mixed-valent complex [Mn(21)O(14)(OH)(2)(O(2)CMe)(16)(hmp)(8)(pic)(2)(py)(H(2)O)](ClO(4))(4) (3; 3Mn(II)-18Mn(III); hmp(-) is the anion of 2-(hydroxymethyl)pyridine), with an average Mn oxidation state of +2.85. Complex 3.7MeCN crystallizes in the triclinic space group P. The structure consists of a low symmetry [Mn(21)(micro(4)-O)(4)(micro(3)-O)(12)(micro-O)(16)] core, with peripheral ligation provided by 16 MeCO(2)(-), 8 hmp(-), and 2 pic(-) groups and one molecule each of water and pyridine. The magnetic properties of 3 were investigated by both dc and ac magnetic susceptibility measurements. Fitting of dc magnetization data collected in the 0.1-0.8 T and 1.8-4.0 K ranges gave S = (17)/(2), D approximately -0.086 cm(-)(1), and g approximately 1.8, where S is the molecular spin of the Mn(21) complex and D is the axial zero-field splitting parameter. ac susceptibility studies in the 10-997 Hz frequency range reveal the presence of a frequency-dependent out-of-phase ac magnetic susceptibility (chi(M)' ') signal consistent with slow magnetization relaxation rates. Fitting of dc magnetization decay versus time data to the Arrhenius equation gave a value of the effective barrier to relaxation (U(eff)) of 13.2 K. Magnetization versus applied dc field sweeps exhibited hysteresis. Thus, complex 3 is a new member of the small but growing family of single-molecule magnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号