首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
We provide an elementary proof of the left-hand side of the following inequality and give a new upper bound for it.
$$\begin{aligned} \bigg [\frac{n!}{x-(x^{-1/n}+\alpha )^{-n}}\bigg ]^{\frac{1}{n+1}}&<((-1)^{n-1}\psi ^{(n)})^{-1}(x) \\&<\bigg [\frac{n!}{x-(x^{-1/n}+\beta )^{-n}}\bigg ]^{\frac{1}{n+1}}, \end{aligned}$$
where \(\alpha =[(n-1)!]^{-1/n}\) and \(\beta =[n!\zeta (n+1)]^{-1/n}\), which was proved in Batir (J Math Anal Appl 328:452–465, 2007), and we prove the following inequalities for the inverse of the digamma function \(\psi \).
$$\begin{aligned} \frac{1}{\log (1+e^{-x})}<\psi ^{-1}(x)< e^{x}+\frac{1}{2}, \quad x\in \mathbb {R}. \end{aligned}$$
The proofs are based on nice applications of the mean value theorem for differentiation and elementary properties of the polygamma functions.
  相似文献   

2.
Let \({\{\lambda_j\}^\infty_{j=0}}\) be a strictly increasing sequence of positive numbers with λ0 = 0 and λ1 = 1. We use orthogonal Dirichlet polynomials associated with the arctangent density, to observe that for r > 0, $$\begin{array}{ll}\int^\infty_0\left |\sum\limits^\infty_{n=1}(-1)^{n-1}a_n\lambda^{-irt}_n\right |^2 \frac{dt}{\pi(1 + t^2)}\\ = \sum\limits^\infty_{n=1}(\lambda^{2r}_n - \lambda^{2r}_{n-1})\left |\sum\limits^\infty_{k=n}(-1)^{k-1}\frac{ak}{\lambda^r_k}\right |^2,\end{array}$$ when the right-hand side converges. As a consequence, we obtain uniform mean value estimates, discrete Hilbert type inequalities, and asymptotics as r → ∞ for classes of Dirichlet series.  相似文献   

3.
For any prime \(p>3,\) we prove that
$$\begin{aligned} \sum _{k=0}^{p-1}\frac{3k+1}{(-8)^k}{2k\atopwithdelims ()k}^3\equiv p\left( \frac{-1}{p}\right) +p^3E_{p-3}\pmod {p^4}, \end{aligned}$$
where \(E_{0},E_{1},E_{2},\ldots \) are Euler numbers and \(\left( \frac{\cdot }{p}\right) \) is the Legendre symbol. This result confirms a conjecture of Z.-W. Sun. We also re-prove that for any odd prime \(p,\)
$$\begin{aligned} \sum _{k=0}^{\frac{p-1}{2}}\frac{6k+1}{(-512)^k}{2k\atopwithdelims ()k}^3\equiv p\left( \frac{-2}{p}\right) \pmod {p^2} \end{aligned}$$
using WZ method.
  相似文献   

4.
For \(k,l\in \mathbf {N}\), let
$$\begin{aligned}&P_{k,l}=\Bigl (\frac{l}{k+l}\Bigr )^{k+l} \sum _{\nu =0}^{k-1} {k+l\atopwithdelims ()\nu } \Bigl (\frac{k}{l}\Bigr )^{\nu }\\&\quad \text{ and }\quad Q_{k,l}=\Bigl (\frac{l}{k+l}\Bigr )^{k+l} \sum _{\nu =0}^{k} {k+l\atopwithdelims ()\nu } \Bigl (\frac{k}{l}\Bigr )^{\nu }. \end{aligned}$$
We prove that the inequality
$$\begin{aligned} \frac{1}{4}\le P_{k,l} \end{aligned}$$
is valid for all natural numbers k and l. The sign of equality holds if and only if \(k=l=1\). This complements a result of Vietoris, who showed that
$$\begin{aligned} P_{k,l}<\frac{1}{2} \quad {(k,l\in \mathbf {N})}. \end{aligned}$$
An immediate corollary is that
$$\begin{aligned} \frac{1}{4}\le P_{k,l}<\frac{1}{2} <Q_{k,l}\le \frac{3}{4} \quad {(k,l\in \mathbf {N})}. \end{aligned}$$
The constant bounds are sharp.
  相似文献   

5.
In this paper, we investigate the Hyers–Ulam stability of the following quartic equation $$\begin{array}{ll} {\sum\limits^{n}_{k=2}}\left({\sum\limits^{k}_{i_{1}=2}}{\sum\limits^{k+1}_{i_{2}=i_{1}+1}} \ldots {\sum\limits^{n}_{i_{n-k+1}=i_{n-k}+1}}\right)\\ \quad\times f \left({\sum\limits^{n}_{i=1,i \neq i_{1},\ldots,i_{n-k+1}}} x_{i}-{\sum\limits^{n-k+1}_{r=1}}x_{i_{r}}\right) + f \left({\sum\limits^{n}_{i=1}}x_{i}\right)\\ \quad-2^{n-2}{\sum\limits^{}_{1 \leq{i} \leq{j} \leq{n}}}(f(x_{i} + x_{j}){+f(x_{i} - x_{j})){+2^{n-5}(n - 2){\sum\limits^{n}_{i=1}}f(2x_{i})}} = \theta \end{array} $$ $({n \in \mathbb{N}, n \geq 3})$ in β-homogeneous F-spaces.  相似文献   

6.
Journal of Algebraic Combinatorics - The well-known Worpitzky identity $$\begin{aligned} (x+1)^n = \sum \limits _{k=0}^{n-1} A_{n,k} {{x+n-k} \atopwithdelims (){n}} \end{aligned}$$ provides a...  相似文献   

7.
A cyclic sequence of elements of [n] is an (nk)-Ucycle packing (respectively, (nk)-Ucycle covering) if every k-subset of [n] appears in this sequence at most once (resp. at least once) as a subsequence of consecutive terms. Let \(p_{n,k}\) be the length of a longest (nk)-Ucycle packing and \(c_{n,k}\) the length of a shortest (nk)-Ucycle covering. We show that, for a fixed \(k,p_{n,k}={n\atopwithdelims ()k}-O(n^{\lfloor k/2\rfloor })\). Moreover, when k is not fixed, we prove that if \(k=k(n)\le n^{\alpha }\), where \(0<\alpha <1/3\), then \(p_{n,k}={n\atopwithdelims ()k}-o({n\atopwithdelims ()k}^\beta )\) and \(c_{n,k}={n\atopwithdelims ()k}+o({n\atopwithdelims ()k}^\beta )\), for some \(\beta <1\). Finally, we show that if \(k=o(n)\), then \(p_{n,k}={n\atopwithdelims ()k}(1-o(1))\).  相似文献   

8.
In this paper, the authors investigate the general solution and generalized Hyers–Ulam stability of the n-dimensional quartic functional equation of the form
$$\begin{aligned} f\left( \sum _{i=1}^{n}x_i\right)&= \sum _{1 \le i<j< k< l\le n} f\left( x_i+x_j+x_k+x_l\right) +\left( -n+4\right) \nonumber \\ {}&\sum _{1 \le i< j< k \le n} f\left( x_i+x_j+x_k\right) +\left( \frac{n^2-7n+12}{2}\right) \sum _{ \begin{array}{c} 1=i;\\ i\ne j \end{array}}^{n} f\left( x_i+x_j\right) \nonumber \\&- \sum _{i=1}^{n} f\left( 2x_i\right) + \left( \frac{-n^3+9n^2-26n+120}{6}\right) \ \ \sum _{i=1}^{n}\left( \frac{f(x_i)+f(-x_i)}{2}\right) \end{aligned}$$
where n is a positive integer with \({\mathbb {N}}- \{0,1,2,3,4\}\). The stability of this quartic functional equation is introduced in Banach space using direct and fixed point methods.
  相似文献   

9.
具$p$-Laplacian 算子的多点边值问题迭代解的存在性   总被引:1,自引:0,他引:1  
利用单调迭代技巧和推广的Mawhin定理得到下述带有p-Laplacian算子的多点边值问题迭代解的存在性,{(Фp(u'))' f(t,u, Tu)=0, 0(≤)t(≤)1,u(0)=q-1∑i=1γiu(δi),u(1)=m-1∑i=1ηiu(ξi),其中Фp(s)=|s|p-2s,p>1;0<δi<1,γi>0,1(≤)i(≤)q-1;0<ξi<1,ηi(≥)0,1(≤)i(≤)m-1且q-1∑i=1γi<1,m-1∑i=1ηi(≤)1;Tu(t)=∫t0k(t,s)u(s)ds,k(t,s)∈C(I×I,R ).  相似文献   

10.
In 1970, J.B. Kelly proved that $$\begin{array}{ll}0 \leq \sum\limits_{k=1}^n (-1)^{k+1} (n-k+1)|\sin(kx)| \quad{(n \in \mathbf{N}; \, x \in \mathbf{R})}.\end{array}$$ We generalize and complement this inequality. Moreover, we present sharp upper and lower bounds for the related sums $$\begin{array}{ll} & \sum\limits_{k=1}^{n} (-1)^{k+1}(n-k+1) | \cos(kx) | \quad {\rm and}\\ & \quad{\sum\limits_{k=1}^{n} (-1)^{k+1}(n-k+1)\bigl( | \sin(kx) | + | \cos(kx)| \bigr)}.\end{array}$$   相似文献   

11.
This paper deals with the existence of weak solutions to a class of degenerate and singular elliptic systems in ℝ N , N 2 of the form
$\left\{{l@{\quad}l}-\mathop{\mathrm{div}}(h_{1}(x)\nabla u)+a(x)u=f(x,u,v)&\mbox{in}\mathbb{R}^{N},\\-\mathop{\mathrm{div}}(h_{2}(x)\nabla v)+b(x)v=g(x,u,v)&\mbox{in}\mathbb{R}^{N},\right.$\left\{\begin{array}{l@{\quad}l}-\mathop{\mathrm{div}}(h_{1}(x)\nabla u)+a(x)u=f(x,u,v)&\mbox{in}\mathbb{R}^{N},\\-\mathop{\mathrm{div}}(h_{2}(x)\nabla v)+b(x)v=g(x,u,v)&\mbox{in}\mathbb{R}^{N},\end{array}\right.  相似文献   

12.
Huixue Lao 《Acta Appl Math》2010,110(3):1127-1136
Let L(sym j f,s) be the jth symmetric power L-function attached to a holomorphic Hecke eigencuspform f(z) for the full modular group, and \(\lambda_{\mathrm{sym}^{j}f}(n)\) denote its nth coefficient. In this paper we are able to prove that
$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{3}f}(n)\bigg|^{2}dy=O\bigl(x^{2}\bigr),$
and
$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{4}f}(n)\bigg|^{2}dy=O\bigl(x^{\frac{11}{5}}\log x\bigr).$
  相似文献   

13.
In this paper we study the uniqueness of nontrivial positive solutions for the following second order nonlinear elliptic system:
$\left\{\begin{aligned} -\Delta u_1+V_1(|x|) u_1 &= \mu_1 u_1^3+\beta u_1u_2^2 & &\quad{\rm in} \ {\mathbb R}^{N},\\ -\Delta u_2+V_2(|x|)u_2&=\beta u_1^2u_2+\mu_2 u_2^3&&\quad{\rm in} \ {\mathbb R}^{N}.\end{aligned}\right.$\left\{\begin{aligned} -\Delta u_1+V_1(|x|) u_1 &= \mu_1 u_1^3+\beta u_1u_2^2 & &\quad{\rm in} \ {\mathbb R}^{N},\\ -\Delta u_2+V_2(|x|)u_2&=\beta u_1^2u_2+\mu_2 u_2^3&&\quad{\rm in} \ {\mathbb R}^{N}.\end{aligned}\right.  相似文献   

14.
In this paper, we establish a singular Trudinger-Moser inequality for the whole hyperbolic space $$H^n: sup_{u∈W^{1,n}(H^n),∫_{H^n}|∇_H^nu|^ndμ ≤ 1}∫_{H^n}\frac{e^{α|u|\frac{n}{n-1}}-Σ^{n-2}_{k=0}\frac{α^k|u|^\frac{nk}{n-1}}{k!}}{ρ^β}dμ‹∞ ⇔ \frac{α}{α_n}+\frac{β}{n} ≤ 1,$$ where α>0,α ∈ [0,n), ρ and dμ are the distance function and volume element of $H^n$ respectively.  相似文献   

15.
For positive integers \(f_1,f_2,m,l\), the author and Chetry defined a generalization of Apéry numbers \(A(f_1,f_2,m,l,\lambda )\) given by
$$\begin{aligned} A(f_1,f_2,m,l,\lambda ):=\sum _{j=0}^{f_2}{f_1+j\atopwithdelims ()j}^m{f_2\atopwithdelims ()j}^l\lambda ^j. \end{aligned}$$
In this article, we prove certain Beukers-like supercongruences for these generalized Apéry numbers.
  相似文献   

16.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

17.
Получены новые оценк иL-нормы тригонометр ических полиномов $$T_n (t) = \frac{{\lambda _0 }}{2} + \mathop \sum \limits_{k = 1}^n \lambda _k \cos kt$$ в терминах коэффицие нтовλ k и их разностейΔλ k=λ k?λ k?1: (1) $$\mathop \smallint \limits_{ - \pi }^\pi |T_n (t)|dt \leqq \frac{c}{n}\mathop \sum \limits_{k = 0}^n |\lambda _\kappa | + c\left\{ {x(n,\varphi )\mathop \sum \limits_{k = 0}^n \Delta \lambda _\kappa \mathop \sum \limits_{l = 0}^n \Delta \lambda _l \delta _{\kappa ,l} (\varphi )} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$ где $$\kappa (n,\varphi ) = \mathop \smallint \limits_{1/n}^\pi [t^2 \varphi (t)]^{ - 1} dt, \delta _{k,1} (\varphi ) = \mathop \smallint \limits_0^\infty \varphi (t)\sin \left( {k + \frac{1}{2}} \right)t \sin \left( {l + \frac{1}{2}} \right)t dt,$$ a ?(t) — произвольная фун кция ≧0, для которой опр еделены соответствующие инт егралы. Из (1) следует, что методы $$\tau _n (f;t) = (N + 1)^{ - 1} \mathop \sum \limits_{k = 0}^{\rm N} S_{[2^{k^\varepsilon } ]} (f;t), n = [2^{N\varepsilon } ],$$ являются регулярным и для всех 0<ε≦1/2. ЗдесьS m (f, x) частные суммы ряда Фу рье функцииf(x). В статье исследуется многомерный случай. П оказано, что метод суммирования (о бобщенный метод Рисса) с коэффиц иентами $$\lambda _{\kappa ,l} = (R^v - k^\alpha - l^\beta )^\delta R^{ - v\delta } (0 \leqq k^\alpha + l^\beta \leqq R^v ;\alpha \geqq 1,\beta \geqq 1,v< 0)$$ является регулярным, когда δ > 1.  相似文献   

18.
Using the fixed point method, we prove the Hyers–Ulam stability of double derivations associated with the following additive mapping: $$\begin{array}{ll}{\sum\limits^{n}_{k=2}\left(\sum\limits^{k}_{i_{1}=2} \sum\limits^{k+1}_{i_{2}=i_{1}+1}\dots \sum\limits^{n}_{i_{n-k+1}=i_{n-k}+1}\right)}\\ {\quad \times f\left( \sum\limits^{n}_{i=1, i\neq i_{1},\dots,i_{n-k+1} } x_{i}\right.\left.-\sum\limits^{n-k+1}_{ r=1}x_{i_{r}}\right)+f\left(\sum\limits^{n}_{ i=1} x_{i}\right) =2^{n-1} f(x_{1})}\end{array}$$ for a fixed positive integer n with n ≥ 2.  相似文献   

19.
Suppose that X is a complex Banach space with the norm ‖·‖ and n is a positive integer with dim Xn ⩾ 2. In this paper, we consider the generalized Roper-Suffridge extension operator $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f) $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f) on the domain $ \Omega _{p_1 ,p_2 , \ldots ,p_{n + 1} } $ \Omega _{p_1 ,p_2 , \ldots ,p_{n + 1} } defined by
$ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f)(x) = {*{20}c} {\sum\limits_{j = 1}^n {\left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)} ^{\beta _j } (f'(x_1^* (x)))^{\gamma _j } x_1^* (x)x_j } \\ { + \left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)^{\beta _{n + 1} } (f'(x_1^* (x)))^{\gamma _{n + 1} } \left( {x - \sum\limits_{j = 1}^n {x_1^* (x)x_j } } \right)} \\ $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f)(x) = \begin{array}{*{20}c} {\sum\limits_{j = 1}^n {\left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)} ^{\beta _j } (f'(x_1^* (x)))^{\gamma _j } x_1^* (x)x_j } \\ { + \left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)^{\beta _{n + 1} } (f'(x_1^* (x)))^{\gamma _{n + 1} } \left( {x - \sum\limits_{j = 1}^n {x_1^* (x)x_j } } \right)} \\ \end{array}   相似文献   

20.
For , let be a collection of () positive weights. The Quadratically Hyponormal Completion Problem seeks necessary and sufficient conditions on to guarantee the existence of a quadratically hyponormal unilateral weighted shift with as the initial segment of weights. We prove that admits a quadratically hyponormal completion if and only if the self-adjoint matrix


is positive and invertible, where , , , , , and, for notational convenience, . As a particular case, this result shows that a collection of four positive numbers always admits a quadratically hyponormal completion. This provides a new qualitative criterion to distinguish quadratic hyponormality from 2-hyponormality.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号