首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
Four families of conjugated molecules, containing between one and three phenyl rings and having both thiol (–SH) and isocyanide (–NC) end groups, have been synthesized and assembled as monolayers on flat Au(111) substrates. The conductance spectra G(V) for these molecular wires were systematically measured in UHV conditions using scanning tunneling microscope techniques. The measured conductance spectra for the molecules having thiol end groups are compared to a recent theory for molecular conduction. The favorable comparison indicates that the important properties influencing the conductance of short, conjugated molecular wires having thiol end groups and forming self-assembled monolayers on a Au(111) surface have been successfully identified. The isocyanide molecules reveal a shift in Fermi level of the molecule as a function of phenyl ring number that is opposite to that observed for the thiol-terminated molecules. The trends in molecular conductance determined from this systematic study are summarized and discussed and provide insight into the role played by bonding end groups in electronic conduction.  相似文献   

2.
《Current Applied Physics》2003,3(2-3):115-127
The present status of self-assembled monolayers (SAMs) on different surfaces (2D systems) as well as monolayer formation on metallic and semiconducting cluster surfaces (3D SAM) to form monolayer-protected nanoclusters (MPCs) and their assemblies is reviewed briefly. Attention is focused mainly on the potential electronic and photonic applications of SAMs, MPCs and their 2D and 3D structures fabricated using covalent and hydrophobic interactions in contrast to the usual electrostatic assemblies. These examples illustrate the rational use of organic molecules and nanoclusters using the concept of self-assembly, where subtle systems of double tunnel junctions, hetero junctions and single-electron transition devices could be developed based on the structure and chemistry of multifunctional molecules. The tailoring of cluster size and cluster–cluster spacing to reveal interesting transitions in electronic properties is also demonstrated using the low temperature behavior of the 3D network of nanoclusters as an example. These devices are believed to play an important role in the coming years as the chip functions and clock frequencies reach orders of magnitude beyond those extrapolated from Moore’s law.  相似文献   

3.
It has long been known that thiol-terminated molecules self-assemble as commensurate monolayers on Au(111) surfaces. By spreading floating octadecanethiol monolayers on aqueous solutions of chloroauric acid (HAuCl4) and using x rays to reduce the gold ions as well as to probe the structure, we have observed the nucleation of (111)-oriented Au nanoparticles at thiol surfaces. This process may be similar to the formation of biogenic gold by bacteria. The thiol monolayer acts as a "soft template," changing its structure as Au crystals form so that there is a sqrt[3]×sqrt[3] commensurate relationship.  相似文献   

4.
The hardness and Young's modulus of 10 and 20 nm gold nanoparticles (Au NPs) modified with bovine serum albumin and streptavidin were measured using a nanoindenter. The Au NPs were immobilized on a semiconductor surface through organic self-assembled monolayers. Changes in mechanical properties occurred when the Au NPs were immobilized on the surface. The hardness and Young's modulus were dependent on the size of the NPs, and the proteins on the particles showed highly plastic and elastic behavior compared to flat surfaces modified with self-assembled monolayers.  相似文献   

5.
在金属电极表面所形成的有机分子的单分子膜或薄膜对于基础研究和实际应用都有着极其重要的意义。以化学吸附形式在金电极表面所形成的半胱胺单分子膜,常常用于蛋白质等生物大分子在金属表面进行吸附的连接层,以避免这些生物大分子在金属表面直接吸附而造成的变性、失活现象的发生。本文报道了我们采用表面增强拉曼散射光谱方法研究在金电极表面吸附的半胱胺单分子膜的结构特征。研究结果表明,在金电极表面所形成的半胱胺单分子膜中,半胱胺分子主要的构型为扭转构型。在与金表面的相互作用中,由于除巯基的结合作用以外,还存在半胱胺分子中端基氨基和金表面较强的亲和性,使得以扭转构型吸附在金表面的半胱胺单分子膜相当稳定。这是金电极表面的半胱胺单分子膜结构的主要行征。当考察外加电势对此单分子膜结构的影响时,可以发现有关扭转构型的特征谱峰其相对强度随着电位负移而减小。这一结构随电位的变化关系可以通过表面电势的变化对氨基氮原子上孤对电子与金属表面间相互作用的影响来加以阐释。  相似文献   

6.
Specific features of the structure of self-assembled layers of dodecanthiol on the surface of polycrystalline films of gold are investigated with the aim of revealing the effect of the substrate relief on the lateral distribution and the predominant orientation of thiol molecules within the limits of the layer. The analysis of the angular dependence of quasi-elastically scattered light that takes into account the contributions of the geometric roughness of the surface and the inhomogeneity of the dielectric constant to scattering allowed us to establish the correlation in antiphase between the distribution of the thickness of the thiol coating and the height of the relief of the gold surface. The formation of a thiol layer on the surface of polycrystalline gold is a complex process including adsorption, local self-assembly, and a surface-induced distortion of the ordered structure in the regions of minima of the surface relief. The approach proposed here and based on the nondestructive analysis of thin organized coatings can be efficiently applied for the study of specific features of the topography and the prediction of chemical functionality of self-assembled molecular ensembles.  相似文献   

7.
An attempt to control surface electronics of III–V semiconductor using wet chemical processes has been performed. Here, we report results on the use of self-assembled monolayers (SAMs) of organic molecules on (0 0 1) GaAs surface. Octadecanethiol (ODT) and benzenethiol (BT) have been the choice in the present study.GaAs wafers were modified by thiol molecules on the flat surface after the native oxide layers are removed by chemical etching under optimized conditions. The change in the electronic properties was measured in terms of transport properties via the SAM layer by conductive probe atomic force microscopy. The current–voltage characteristics thus obtained show that ODT functions as a tunnel barrier while BT is conductive due to the presence of π-electrons. As a result, we can control the electronic states of GaAs–molecule interface for realizing novel device structures by the selection of functional molecules.  相似文献   

8.
This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti-Escherichia coli O157:H7 polyclonal purified antibody.A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti-E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab′)2 fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results.These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.  相似文献   

9.
The stability of four different hydrophobic surfaces in contact with water is assessed and discussed: H-terminated silicon, hexamethyldisilazane (HMDS) coated silicon, silicon surfaces covered with self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) and gold surfaces modified with SAMs of alkanethiols. Changes in hydrophobicity and surface oxidation were determined by contact angle measurements, X-ray photoelectron spectroscopy and AFM.  相似文献   

10.
We have characterized the structural behaviour of ethanethiol self-assembled monolayers (SAMs) on Au(1 0 0) in 0.1 M H2SO4 as a function of electrode potential, using in-situ scanning tunneling microscopy (STM). After modification of the Au(1 0 0) electrode in an ethanolic solution of ethanethiol, STM images in air reveal a disordered thiol adlayer and a surface that is covered by 25% of monoatomic high gold islands, which originate from lifting of the (hex) reconstruction during thiol adsorption. In contrast to alkanethiol SAMs on Au(1 1 1), no vacancy islands are seen on the Au(1 0 0) surface. After contact of the SAM-covered Au(1 0 0) electrode with 0.1 M H2SO4 under potential control, two different structures are observed, depending on the potential range positive or negative of +0.3 V vs. SCE. In both cases the emerging ordered structures are quadratic, their unit cells being rotated by 45° with respect to the main crystallographic axes of the substrate. However, the ordered structure at negative potentials is more densely packed than the one at positive potentials, and in addition the surface reveals an almost 50% coverage of monoatomic high gold islands. The structure of the SAM changes reversibly with the electrode potential, the long range order gradually decreasing with each transition. Concomittant with this structure transition monoatomic deep holes are created when the potential is stepped from the cathodic to the anodic region. The experimental observations are rationalized by a high mobility of the gold thiolate moiety, causing the surface density of the SAM-covered gold to change drastically with potential.  相似文献   

11.
硒杂环化合物(4,5-苯并苤硒脑)在金表面上的自组装   总被引:4,自引:0,他引:4  
为了寻求新的自组装单分子膜体系 ,构建新的功能膜 ,研究了具备平面型的大环共轭硒杂环化合物——— 4,5 苯并苤硒脑 (苯并 [c]硒二唑 ,简称苤硒脑 )在金表面的自组装单分子膜 .通过X射线光电子能谱 (XPS)和电化学手段对其进行表征 .XPS研究结果表明 ,自组装形成单分子膜后 ,苤硒脑分子中Se3d结合能从 5 7.4eV下降到 5 7.1eV ;表明硒杂环化合物是通过金硒键固定在金表面上的 ;电化学循环伏安法实验表明 ,金电极表面上自组装该有机硒后 ,Fe(CN) 63 -/ 4 -的氧化还原峰几乎完全消失 ;以四硼酸钠为底液 ,测得该化合物自组装在金表面上时 ,其还原电位在 - 0 .6 6V ,与在溶液中用裸金电极测得的还原峰电位基本一致 .  相似文献   

12.
Designing a well-defined and stable interface between biomolecules and semiconductor surfaces is of great importance for current and future biosensing and bioelectronic applications. The well-characterized chemistry, stability, and easily tunable electronic properties of silicon substrate make it a practical platform for this type of interface. It has been established in our previous work that a robust, covalent attachment between thiol-DNA molecules of a pre-designed geometrical shape and a modified silicon surface can be achieved. This work focuses on using this binding model and altering the distance between the DNA molecules and silicon surface by strategically placing thiol linkers within the pre-determined geometric design of the rectangularly shaped DNA. The statistical analysis of the height profiles of DNA molecules attached to the surface, as determined by AFM, provides specific insight into how the construction of the DNA molecules affects the binding distance. A comparison between two thiol-DNA molecules with different numbers of thiol groups placed either within the rectangular shape or anchored to the free loop of the same geometric design suggest that the average distance of these molecules to the functionalized silicon surface can be changed by approximately 0.5 nm.  相似文献   

13.
The adhesion of gold nanoparticles either electrostatically or chemically attached to a substrate has been probed using AFM operating in force spectroscopy mode. A monolayer of –NH2 terminated 3-aminopropyltriethoxysilane or –SH terminated 3-mercaptopropyltrimethoxysilane was self-assembled onto a p-type silicon (100) substrate. Each silane monolayer provided the point of attachment for citrate stabilised gold colloid nanoparticles. In the case of the –NH2 terminated layer gold colloid assembly was driven by the electrostatic attraction between the negative, citrate-capped, gold nanoparticles and a partially protonated amine layer. In the case of the –SH terminated regions, well-known gold–thiol chemistry was used to chemically attach the nanoparticles. An atomic force microscope tip was chemically modified with 3-mercaptopropyltrimethoxysilane and scanned across each surface, where the cantilever deflection was measured at each x, y pixel of the image to create an array of adhesion force curves. This has allowed an unprecedented nanoscale characterisation of the adhesion force central to two common surface attachment methods of gold colloid nanoparticles, providing useful insights into the stability of nanoscale constructs.  相似文献   

14.
The adsorption behaviors of fibrinogen on the self-assembled monolayers (SAMs) with different chemical properties were investigated using an atomic force microscopy (AFM). AFM images indicated that the adsorption amounts of fibrinogen molecules increased with an increase of the surface hydrophobicity. High-resolution AFM imaging revealed that the fibrinogen conformations adsorbed on the SAM surface changed with dependent on the surface chemistry. The adsorption models of fibrinogen molecules adsorbed on SAM surfaces with different chemical properties were proposed based on the high-resolution AFM images.  相似文献   

15.
The origin of orbital magnetism recently observed in different nanostructured films and particles is discussed as a consequence of spin-orbit coupling. It is shown that contact potentials induced at the thin film surface by broken symmetries, as domain boundaries in self-assembled monolayers, lead to orbital states that in some cases are of large radius. The component of the angular momentum normal to the surface can reach very high values that decrease the total energy by decreasing spin-orbit interaction energy. Intraorbital ferromagnetic spin correlations induce orbital momenta alignment. The estimated values of the magnetic moments per atom are in good agreement with the experimental observations in thiol capped gold films and nanoparticles.  相似文献   

16.
We report a scanning tunneling spectroscopy study on the size-tunable isolated gold nanoclusters grown on thiol/dithiol mixed self-assembled monolayers (SAMs) where the effect of neighboring clusters are practically excluded. The structure forms double tunnel junction system in which the spectra exhibit Coulomb staircases. With increasing cluster size the standard deviation of the offset charge distribution for clusters increases, accompanied with the increase of total capacitance. The results are qualitatively same with the previous ones where clusters are densely grown on the substrate, indicating that this behavior is an intrinsic property for the double tunnel junction structures of tip/vacuum/single cluster/SAMs/Au(1 1 1) systems.  相似文献   

17.
Double-ended alkanedithiols, 1,9-nonanedithiol and 1,5-pentanedithiol, formed self-assembled monolayers (SAMs) on Au(l11) substrates and were used to adsorb silver ions from an ethanolic solution of silver nitrate and formed Ag–dithiol–Au multilayer structures. Ellipsometry, contact angle measurement and X-ray photoelectron spectroscopy (XPS) confirmed that the alkanedithiol molecules formed SAMs with only one-ended thiol groups attached to the Au substrates, which was supported by molecular mechanics calculation. XPS and X-ray Auger electron spectroscopy (XAES) indicated that silver ions were deposited onto the SAMs from the solution by the chemical reaction of silver nitrate with another-ended thiol groups of the SAMs. Atomic force microscopy (AFM) was used to observe SAMs and multilayer structures. Received: 20 January 2000 / Accepted: 18 April 2000 / Published online: 9 August 2000  相似文献   

18.
曹晓卫 《光散射学报》2003,15(4):237-245
本文报道了采用原位傅立叶变换-表面增强拉曼散射(Fouriertransform-surfaceenhancedRamanscattering,FT-SERS)光谱技术测定在缓冲溶液和金电极界面上自组装单分子膜(self-assembledmonolayers,SAMs)的表面电离常数及其随电极电位改变的研究之初步结果。该方法通过应用FT-SERS原位光谱技术测定SAMs中质子化端基氨基的对离子ClO4特征峰强度随溶液pH值改变而变化的数值,获得相应的FT-SERS滴定曲线,进而可以确定一定条件下该SAMs功能化端基的表面电离常数。实验测定了2-氨基乙硫醇(2-aminoethanethiol,2AT)SAMs在三个不同电位下,在含有NaClO4支持电解质的Britton&Robinson缓总溶液中的表面电离常数。实验结果揭示了在所研究的电位范围内,2ATSAMs端基氨基基团的表面pKa值随电极电位的正向增加而减小的变化规律。  相似文献   

19.
This paper reported a dual-mode probe for D-penicillamine on the basis of pH-mediated gold nanoparticles aggregation and fluorescence resonance energy transfer (FRET) from carbon dots. D-penicillamine is a zwitterionic compound and has different forms depending on specific pH ranges. The thiol group of D-penicillamine has high affinity towards the surface of gold nanoparticles and can replace other surface ligands. When pH values were close to its isoelectrical point (pH(I)), the D-penicillamine capped gold nanoparticles aggregated through hydrogen bonding or electrostatic interactions, resulting in the releasing of carbon dots from gold nanoparticles. The dual-mode probe consisted of fluorescent carbon dots and gold nanoparticles, and the fluorescence of carbon dots was quenched by the attached gold nanoparticles due to the FRET. Then, the fluorescence can be recovered in presence of D-penicillamine due to the gold nanoparticles aggregation in specific pH range. Under the optimum conditions, the probe has linear response for D-penicillamine in the 0.25–1.5 μM concentration range with a detection limit of 0.085 μM. This method provides a potential application in sensitive detection of D-penicillamine.  相似文献   

20.
An attempt has been made for using MSA‐modified electrodes as linkage monolayers for electrostatic and covalent binding of cytochrome c (Cc). For MSA monolayers grown from an aqueous solution on Ag, attachment of Cc in its native state is proved in the case of covalent bonding. Electrostatic immobilization of Cc at pH 7 results in presence of at least some amount of Fe2+ high‐spin configuration and/or Fe3+ oxidation state. Native protein Fe2+ low‐spin state of Cc is observed after applying a negative potential to the Ag electrode. The influence of the solvent used for the preparation of the MSA monolayer and thiol surface coverage of the Ag surface was studied. It was shown that the key factor to obtain the native structure of Cc is the successful blocking of the metal surface by the MSA linking layer. IRRAS measurements of MSA on monocrystalline gold (111) at neutral pH confirm the successful electrostatic Cc immobilization, which preserves the Fe2+ oxidation state of the chromophore on this substrate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号