首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low-field magnetic properties of amorphous (Fe1?x Nix)80P10B10 are examined by measuring the local magnetic reversal field and the pinning field as function of position. Also measurements of magnetic anisotropy using FMR are reported. The observed magnetic behaviour is discussed generally. The magnetization reversal for the ideal parts of the wires may be described by the process of growth of nuclei present.  相似文献   

2.
The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni80Fe20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni80Fe20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni80Fe20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.  相似文献   

3.
We have investigated the exchange bias effect in micron-sized ferromagnetic wires made from Co and Ni80Fe20 films. The wires were fabricated using optical lithography, metallization by sputtering and lift-off technique. Magnetotransport measurements were performed at temperatures ranging from 3 to 300 K. We observed marked changes in the magnetoresistance (MR) properties as the temperature is varied. At 300 K, the field at which the sharp peak occurs corresponding to the magnetization reversal of the Co wires is 167 Oe and is symmetrical about the origin. As the temperature was decreased to 3 K, we observed a shift in the peak positions of the MR characteristics for both the forward and reverse field sweeps corresponding to a loop shift of 582 Oe in the field axis. The asymmetric shift in the MR loops at low temperatures clearly indicates the exchange bias between ferromagnetic (Co) and antiferromagnetic parts (Co-oxide at the surfaces) from natural oxidation. Ni80Fe20 wires of the same geometry showed similar effect with a low exchange bias field. The onset of exchange biasing effect is found to be 70 and 15 K for the Co and Ni80Fe20 wires, respectively. A striking effect is the existence of exchange biasing effect from the sidewalls of the wires even when the wires were capped with Au film.  相似文献   

4.
A study is reported on the behavior of the isotherms of the magnetization σ(H) and of the longitudinal λ(H), transverse λ(H), volume ω(H), and anisotropic λt(H) magnetostrictions measured at T=80 K in the Cu0.4Fe0.6[Ni0.6Cr1.4]O4 and Zn0.4Fe0.6[Ni0.6Cr1.4]O4 ferrite-chromites having a frustrated magnetic structure. It has been established that these ferrite-chromites do not undergo technical magnetization and that the growth of the magnetization with the field is accounted for by two paraprocesses of different natures.  相似文献   

5.
We present experimental evidences for magnetization modification by superconductivity in a series of Nb/Ni80Fe20/Nb trilayers. By monitoring the magnetization in a zero field as a function of temperature, we observed an irreversibility in magnetization between the cooling and warming branches just above the superconducting transition temperature Tc. These results suggest that the magnetization of the ferromagnetic Ni80Fe20 layer is reduced by the mutual interactions between the ferromagnet and superconductor. Moreover, this effect diminishes with increasing thickness of the Ni80Fe20 layer, which indicates that the interaction between the superconducting and magnetic layers occurs mainly at the vicinity of the interfaces.  相似文献   

6.
M-type hexaferrites with Co2+ and Ni2+ions substituting for Fe3+ ions (Ca0.30Sr0.35La0.35Fe12.0−x(Co0.5Ni0.5)xO19, 0.0 ≤ x ≤ 1.0) were prepared by the traditional solid state method. X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), physical property measurement system-vibrating sample magnetometer (PPMS-VSM) have been employed to study the microstructures and magnetic properties of hexaferrites. XRD patterns showed that the single magnetoplumbite phase is obtained if Co–Ni content (x) ≤ 0.4 and impurity phases are observed in the structure when Co–Ni content (x) ≥ 0.4. FE-SEM micrographs showed that the hexaferrites with hexagonal platelet-like grains is obtained. The saturation magnetization (Ms), remanent magnetization (Mr), Mr/Ms ratio, magneton number (nB), coercivity (Hc), magnetic anisotropy field (Ha) and first anisotropy constant (K1) decrease with increasing Co–Ni content (x) from 0.0 to 1.0. And our reported results with tunable Hc and Mr can be used for recording applications.  相似文献   

7.
Measurements of isothermal magnetization and magnetoresistance at T = 4.0-4.2 K and 15 ? H ? 132 kG on the amorphous ferromagnets Fe80B20, Fe78Mo2B20, Fe40Ni40P14B6, and Fe32Ni36Cr14P12B6 indicate a relatively large H-induced increase (3.6%) in the high-magnetic-field magnetization of the latter alloy, and marked differences in the magnitude and sign of the high-field magnetoresistance of the four alloys. The results are qualitatively interpreted in terms of internal effective field distributions which include a small fraction of atomic spins in negative field sites.  相似文献   

8.
In this work, Ni80Fe20/Cu and Ni80Fe20/SiO2/Cu composite wires of Cu core 100 μm in diameter and coated with a layer of Ni80Fe20 were produced by RF magnetron sputtering. In order to obtain a uniform coating, the wires were spun during sputtering. The influences of the magnetic coating and insulator thickness on the GMI effect of the composite wires were investigated. The results showed that the film thickness has a significant effect on the magnitude and the optimum frequency of the GMI effect. After the addition of an insulator layer, the MI ratio of the composite wires was observed to change with varying thickness of the insulator layer. This observed trend was attributed to the interaction between the conductive layer and the high-permeability magnetic coating.  相似文献   

9.
Electric field-induced magnetic anisotropy has been realized in the spin-valve-based {Ni80Fe20/Cu/Fe50Co50/IrMn}/piezoelectric multiferroic laminates. In this system, electric-field control of magnetization is accomplished by strain mediated magnetoelectric coupling. Practically, the magnetization in the magnetostrictive FeCo layer of the spin-valve structure rotates under an effective compressive stress caused by the inverse piezoelectric effect in external electrical fields. This phenomenon is evidenced by the magnetization and magnetoresistance changes under the electrical field applied across the piezoelectric layer. The result shows great potential for advanced low-power spintronic devices.  相似文献   

10.
The magnetic hysteresis of Fe57Ni43/Si(100) with magnetic anisotropy induced by an external field has been studied by Brillouin light scattering (BLS). The results are compared with those of the magneto-optic-Kerr-effect (MOKE) measurement and the vibrating sample magnetometer (VSM). The BLS results show that the sample film has strong in-plane anisotropy. The angle between the magnetization and a 4.6 G applied magnetic field H reaches a maximum value of 45° when H lies along the hard axis. The coercivity and magnetic anisotropy field for the film obtained by the BLS are compared with the values obtained by the VSM and MOKE measurement.  相似文献   

11.
The magnetization processes within the narrow domain laminae of amorphous ferromagnetic alloys have been investigated by means of the magneto-optical Kerr effect. Changes of the domain width of the closure domains by a magnetic field applied perpendicular to the laminae have been determined for the alloys Fe80B20 and Fe40Ni40P14B6. These results are compared with theoretical calculations, assuming that wall displacements within the closure domains and rotations of the magnetization in the bulk domains take place simultaneously and a stray field free domain structure is developed. It turned out, that the closure domain structure on the surface of the sample vanishes at the same magnetic field where magnetic saturation is approached.  相似文献   

12.
The structure and magnetoresistance R of thin films based on Ni80Fe20 permalloy doped with Co, Zr, and Cu have been examined by X-ray diffraction analysis and resistance measurement. The films have been obtained by ion plasma sputtering on oxidized silicon, fused quartz, and glass ceramic cold substrates. It has been shown that the structure of a film in the initial state is a mixture of solid solutions based on two phases: Ni(fcc) particles with a size of L ≈ 8 nm and (Zr0.67Ni0.22O0.11)γ particles with a size of L ≈ 12 nm. The R(H) dependences on the strength and direction of the magnetic field H have been obtained at room temperature for film samples in the initial state and after isothermal annealing at 653 K for 1 h. According to R(H) dependences and X-ray diffraction analysis, films in the initial state are assumingly in a superparamagnetic state, whereas they exhibit ferromagnetic properties after isothermal annealing.  相似文献   

13.
The Fe14.5Co16.5Ni55B15 and the Fe13Co15.5Ni51.5B20 ferromagnetic nanowires were deposited using the electrochemical deposition method. The structure of these nanowires was investigated using X-ray diffraction. Squid magnetometer was used to investigate the magnetic behavior. The hysteresis loops of 50 μm long nanowire arrays were studied as a function of boron concentration, nanowire diameter and field orientation. The competition between shape anisotropy and magnetostatic interactions played a vital role in determining the magnetic field necessary to saturate an array. The decrease in coercive field (Hc) and the squareness (SQ) of the hysteresis loop from 100 to 200 nm wire diameter for both types of compositions suggests the formation of multidomains in the nanowire.  相似文献   

14.
Evaporative deposition at oblique incidence is shown to enhance the magnetic anisotropy of an Fe20Ni80 magnetic film and induce magnetic anisotropy in an overlying, strongly isotropic Fe70Co30 film. This deposition method for the formation of an underlayer of several lattice parameters in thickness and semi-hard overlayer of a few thousands Angstroms in thickness achieves a significant change in the magnetization process and strong suppression of the coercive forces of Fe70Co30 in the hard magnetization direction. Soft magnetization of the Fe70Co30 overlayer is not achieved when one of the layers is deposited at oblique incidence. It is anticipated that shape magnetic anisotropy is responsible in part for the magnetic anisotropy induced in both in Fe20Ni80 under- and Fe70Co30 overlayer by oblique incidence evaporation.  相似文献   

15.
This work reports the magnetic properties of sputtered permalloy (Ni80Fe20) multilayers grown changing the anisotropy direction 90° in successive layers. Magnetic measurements show how the saturating field can be controlled by the thickness ratio between different anisotropy layers and how the coercive field is reduced increasing the number of layers. The linearity of the hysteresis loop is also improved when increasing the number of layers. Magnetic measurements are compared to simulations based on a Stoner-Wolfarth magnetization rotation mechanism.  相似文献   

16.
Mechanical alloying method was used to prepare nanocrystalline Co50Fe40Ni10, Co52Fe26Ni22 and Co65Fe23Ni12 alloys. X-ray diffraction proved that during milling Co–Fe-based solid solution with b.c.c. lattice was formed in the case of Co50Fe40Ni10, while for Co52Fe26Ni22 and Co65Fe23Ni12 compositions Co–Ni-based solid solutions with f.c.c. lattice were obtained. Mössbauer spectroscopy revealed similar values of the average hyperfine magnetic fields for all alloys, e.g. 32.17, 32.24 and 31.21 T for Co50Fe40Ni10, Co52Fe26Ni22 and Co65Fe23Ni12 alloys, respectively. Magnetization measurements allowed to determine the effective magnetic moment, Curie temperature, saturation magnetization and coercive field for the obtained alloys.  相似文献   

17.
Array of dots have been designed by assembling a monolayer of polystyrene nanospheres (PN) on sputtered thin films having Ni80Fe20 and Co composition with different thickness, ranging in the interval 20 ÷ 80 nm. Subsequently the films are nanopatterned using the nanospheres as a mask during sputter etching with Ar+ ions. A Reactive Ion Etching (RIE) process before sputter etching is used to control the final diameter of the magnetic dots that thus can be tailored as desired (typically ranging in the interval 250 ÷ 400 nm depending on the PN starting diameter). In addition, electron beam lithography has been exploited to obtain arrays of dots in Ni80Fe20 thin films having approximately the same mean size and dot distance as in self-assembled samples. All films have been routinely characterized by SEM and AFM microscopy to evaluate the microstructure. Magnetic domain patterns at magnetic remanence and in the demagnetised state have been imaged by MFM microscopy technique. Room-temperature hysteresis properties have been measured by an alternating gradient force magnetometer. In general, the magnetization process in all patterned films has been observed to have features typical of a vortex whose nucleation field depends on sample thickness and mean dot dimension. A comparison between magnetic arrays of Ni80Fe20 dots prepared by self-assembling of polystyrene nanospheres and electron beam lithography is presented to rule out the role of microstructure (i.e., order, size, and mutual distance of the magnetic dots) on magnetic properties.  相似文献   

18.
The correlations between fluctuations in the57Fe Mössbauer hyperfine parameters of the amorphous alloys (Fe0.5Ni0.5)100?x B x (x=16, 18, 20, 22 and 25 at%) and FeyNi80?y B20 (y=20, 25, 40 and 60 at%) have been determined. Values of the correlation between the fluctuations of the isomer shift and the fluctuations of magnetic hyperfine field, μN 〈ΔHΔδ〉 together with published values on similar amorphous systems are compared with correlation values for related crystalline phases. The lack of characteristic values suggests that the correlation values do not allow a link to be made between local structural units in amorphous alloy and crystalline phases.  相似文献   

19.
The magnetization process of the spin-1 Heisenberg dimer model with the uniaxial or biaxial single-ion anisotropy is particularly investigated in connection with recent experimental high-field measurements performed on the single-crystal sample of the homodinuclear nickel(II) compound [Ni2(Medpt)2(μ-ox)(H2O)2](ClO4)2·2H2O (Medpt=methyl-bis(3-aminopropyl)amine). The results obtained from the exact numerical diagonalization indicate a striking magnetization process with a marked spatial dependence on the applied magnetic field for arbitrary but finite single-ion anisotropy. It is demonstrated that the field range, which corresponds to an intermediate magnetization plateau emerging at a half of the saturation magnetization, basically depends on a single-ion anisotropy strength as well as a spatial orientation of the applied field. The breakdown of the intermediate magnetization plateau is discussed at length in relation to the single-ion anisotropy strength.  相似文献   

20.
Particulate composites with composition (x)BaTiO3+(1−x)Ni0.92Co0.03Cu0.05Fe2O4 in which x varies as 1, 0.85, 0.70, 0.55 and 0 (in mol%) were prepared by the conventional double sintering ceramic technique. The presence of two phases viz. ferromagnetic (Ni0.92Co0.03Cu0.05Fe2O4) and ferroelectric (BaTiO3) was confirmed by X-ray diffraction analysis. The dc resistivity and thermo-emf measurements were carried out with variation of temperature. The ac conductivity (σac) measurements investigated in the frequency range 100 Hz to 1 MHz conclude that the conduction in these composites is due to small polarons. The variation of dielectric constant and loss tangent with frequency (20 Hz to 1 MHz) was studied. The static magnetoelectric conversion factor, i.e. dc (dE/dH)H was measured as a function of intensity of applied magnetic field. The changes were observed in electrical properties as well as in magnetoelectric voltage coefficient as the molar ratio of the constituent phases was varied. A maximum value of magnetoelectric conversion factor of 536.06 μV/cm Oe was observed for the composite with 70% BaTiO3+30% Ni0.92Co0.03Cu0.05Fe2O4 at a dc magnetic field of 2.3 K Oe. The maximum magnetoelectric conversion output has been explained in terms of ferrite-ferroelectric content, applied static magnetic field and resistivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号