首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A headspace solid‐phase microextraction (HS‐SPME) method coupled to GC‐MS was developed in order to determine trace levels of tetramethyltin (TeMT) and inorganic tin (iSn) after ethylation to tetraethyltin (TeET) in various matrices. The derivatization of iSn and the extraction of both TeMT and iSn as TeET were performed in one step. Sodium tetraethylborate (NaBEt4) was used as derivatization agent and the volatile derivatives were absorbed on a PDMS‐coated fused silica fiber. The conditions for the HS‐SPME procedure were optimized in order to gain in repeatability and sensitivity. Several critical parameters of GC‐MS were also studied. The detection of TeMT and iSn as TeET peaks was performed by the SIM mode. The precision of the proposed method is satisfactory providing RSD values below 10% for both tin species and good linearity up to 10 μg/L. The developed method was successfully applied to the determination of tin species in several samples like canned fish, fish tissues, aquatic plants, canned mineral water and sea water. The proposed HS‐SPME‐GC‐MS method was proved suitable to monitor the concentration levels of toxic tin compounds in environmental and biological samples.  相似文献   

2.
Recent progress in the adaptation of combinatorial biology selection protocols to materials science has created a new class of polypeptides with specific affinity to inorganics. Here, we use one of the genetically engineered proteins, a gold binding protein (GBP‐1), to assess quantitatively its binding specificity to Au, Ag and Pd surfaces by using time‐of‐flight secondary ion mass spectroscopy (TOF‐SIMS). The GBP‐1, originally selected using cell‐surface display techniques, consisting of 14 amino acids with a sequence of MHGKTQATSGTIQS, was used in this study. Three‐repeat and single‐repeat forms of GBP‐1 were prepared. In earlier studies, GBP‐1 was shown to bind to Au particles and self‐assemble on flat Au surfaces. Through the fingerprint analysis of these specific peptides, their role in binding can be investigated in terms of their contribution to surface interaction possibly forming the right molecular architecture for binding. To achieve this purpose, a large‐sized data matrix produced by TOF‐SIMS must be properly treated for analysis. In Part A, we use principal component analysis (PCA) to visualize the spectral variations for a variety of adsorption conditions and suggest possible contribution of the specific types of amino acids (binding site) to the interactions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Trans-2-nonenal is an aldehyde contributing to an unpleasant off-flavor and odor of rancid butter in stored beer. The automated solid-phase microextraction technique (SPME) coupled with gas chromatography (GC) and solid-phase dynamic extraction (SPDE) coupled with gas chromatography were optimized and introduced to determine trans-2-nonenal in barley, malt and beer. Five types of SPME fibers coated with different stationary phases (100 μm PDMS, 65 μm PDMS/DVB, 85 μm CAR/PDMS, 50/30 μm DVB/CAR/PDMS, 85 μm PA) and two needles (PDMS, PDMS/AC) were compared and tested for their efficiencies in the headspace (HS) SPME and SPDE determination of trans-2-nonenal in barley, malt and beer. The highest extraction efficiency of HS-SPME was achieved with the PDMS/DVB fiber, and addition of 1.5 g of NaCl, extraction time was 20 min at 60 °C. The highest extraction efficiency of HS-SPDE was obtained with the PDMS needle, 15 extraction strokes at 60 °C and addition of 1.5 g of NaCl. Trans-2-nonenal was identified with the method of HS-SPME coupled gas chromatography-mass spectrometry (GC–MS); the samples were analyzed using the HS-SPME-GC-coupled gas chromatography-flame ionization detector (GC-FID) technique.  相似文献   

4.
Solid‐phase microextraction (SPME) has been directly coupled to an ion‐trap mass spectrometer (MS) for the determination of the model compound lidocaine in urine, hereby applying MS/MS [fragmentation of [M + H]+ (m/z 235) to a fragment with m/z 86]. The throughput of samples has been increased using non‐equilibrium SPME with polydimethylsiloxane (PDMS) fibers. The effect of temperature on the sorption and the desorption was studied. Elevated temperatures during sorption (65°C) and desorption (55°C) had a considerable influence on the speed of the extraction. The desorption was carried out with a home‐made desorption chamber allowing thermostating. Only 1 min sorption and 1 min desorption were performed, after which MS detection took place, resulting in a total analysis time of 3 min. Detection limits below 1 ng/mL could be obtained despite yields of only 2.1 and 1.5% for a 100‐ and a 30‐μm PDMS‐coated fiber, respectively. Furthermore, the determination of lidocaine in urine had acceptable reproducibilities, i.e., relative standard deviations (RSDs) below 10%. A limit of quantitation (RSD < 15%) of about 1 ng/mL was obtained. No extra wash step of the extraction fiber was required after desorption if a 30‐μm coating was used, whereas not all the analyte was desorbed from the 100‐μm coating in a single desorption. Therefore, the SPME‐MS/MS system with a 30‐μm PDMS‐coated fiber for rapid non‐equilibrium SPME at elevated temperatures has interesting potential for high‐throughput analysis of biological samples.  相似文献   

5.
Volatile organic compounds (VOCs) emitted from in vitro cultures may reveal information on species and metabolism. Owing to low nmol L−1 concentration ranges, pre‐concentration techniques are required for gas chromatography–mass spectrometry (GC–MS) based analyses. This study was intended to compare the efficiency of established micro‐extraction techniques – solid‐phase micro‐extraction (SPME) and needle‐trap micro‐extraction (NTME) – for the analysis of complex VOC patterns. For SPME, a 75 μm Carboxen®/polydimethylsiloxane fiber was used. The NTME needle was packed with divinylbenzene, Carbopack X and Carboxen 1000. The headspace was sampled bi‐directionally. Seventy‐two VOCs were calibrated by reference standard mixtures in the range of 0.041–62.24 nmol L−1 by means of GC–MS. Both pre‐concentration methods were applied to profile VOCs from cultures of Mycobacterium avium ssp. paratuberculosis. Limits of detection ranged from 0.004 to 3.93 nmol L−1 (median = 0.030 nmol L−1) for NTME and from 0.001 to 5.684 nmol L−1 (median = 0.043 nmol L−1) for SPME. NTME showed advantages in assessing polar compounds such as alcohols. SPME showed advantages in reproducibility but disadvantages in sensitivity for N‐containing compounds. Micro‐extraction techniques such as SPME and NTME are well suited for trace VOC profiling over cultures if the limitations of each technique is taken into account.  相似文献   

6.
A method for the determination of polycyclic aromatic hydrocarbons (PAHs) in soil samples using ultrasonic‐assisted extraction with internal surrogates combined with solid‐phase microextraction and GC‐MS has been developed. Five kinds of commercial solid‐phase microextraction fibers, 100 μm PDMS, 30 μm PDMS, 65 μm PDMS/DVB, 50 μm DVB/CAR/PDMS and 85 μm PA, were compared to choose the optimal SPME fiber for extraction of PAHs. One hundred micrometers of PDMS fiber was found to be more suitable for the determination of PAHs due to its wider linear range, better repeatability, lower detection and more satisfactory efficacy than the other fibers. Under the recommended conditions, 100 μm PDMS fiber could provide low nanogram level detection limits with correlation coefficient greater than 0.98. The method was also applied to determine PAHs in a spiked soil sample, obtaining recoveries higher than 79.3%. A field study with naturally contaminated samples from local contaminated sites was carried out. The proposed method was found to be a reliable, inexpensive and simple preparation method for quantitative determination of 16 PAHs in soil samples.  相似文献   

7.
Analysis of pesticide residues in water and food matrices is an active research area closely related to food safety and environmental issues. In this aspect mass spectrometry (MS) coupled to gas chromatography (GC) and liquid chromatography (LC) has been increasingly used in the analysis of pesticide residues in water and food. The increasing interest in application of high‐resolution mass spectrometry with time‐of‐flight (TOF) and hybrid triple quadrupole TOF in pesticide analysis is due to its capability of performing both targeted and nontargeted analysis. This article discusses an overview of the application of GC‐TOF‐MS and LC‐TOF‐MS in water and food matrices.  相似文献   

8.
In a study aiming to characterize cork off‐flavour for quality control purposes, chloroanisoles were extracted and identified from cork stoppers by means of solid‐phase microextraction (SPME)–gas chromatography–ion‐trap mass spectrometry (GC–ITMS). An experimental design procedure was used to investigate the effects of some experimental parameters on the SPME of 2,4‐dichloroanisole, 2,6‐dichloroanisole, and 2,4,6‐trichloroanisole from cork stoppers by using a Carboxen‐PDMS 75 μm fibre. Variables such as extraction temperature, extraction time, and percentage of ethanol added to the matrix were optimized to improve extraction efficiency of chloroanisoles onto SPME fibre. Instrumental analysis was performed by GC–ITMS in the MS/MS mode. Preliminary analyses on standard solutions allowed selection of the appropriate ionization mode (i. e. electron impact or chemical ionization), providing for each analyte the highest instrumental response. In order to find polynomial functions describing the relationships between variables and responses, the analytical responses, i.e. the chromatographic peak areas, were processed by using the backward multiple regression analysis. For all the analytes the operating conditions providing the highest extraction yield inside the experimental domain considered were found.  相似文献   

9.
J.J. Rios  A. Morales 《Talanta》2010,80(5):2076-180
A solvent-free analytical approach based on headspace solid-phase microextraction (SPME) of oil matrices heated at high temperatures coupled to gas chromatography with mass spectrometry detector (GC-ion trap) has been developed for the determination of phthalic acid esters (PAEs) in oil matrices without sample manipulation. For this study, three fibers, i.e., 85 μm-polyacrylate (PA), 50/30 μm-divinylbenzene-carboxen-polydimethylsiloxane (DVB/CAR/PDMS) and 100 μm-polydimethylsiloxane (PDMS) were tested. Variables affecting the SPME headspace composition such as incubation sample temperature, sample incubation time and fiber exposition time were optimized. The optimal values found were 250 °C for sample incubation temperature and 30 min for incubation and extraction time. PA fiber was not suitable for the lightest polar phthalates which showed poor extraction and repeatability values. PDMS fiber had very poor response for some of the heavier and non-polar phthalates, whereas DVB/CAR/PDMS fiber showed the best response and repeatability values for the majority of the phthalates studied. The main benefit of the analytical method proposed is the absence of sample manipulation and hence avoidance of possible contamination coming from glassware, environment, solvents and samples.  相似文献   

10.
We apply, for first time, the recently developed proton transfer reaction time‐of‐flight mass spectrometry (PTR‐TOF‐MS) apparatus as a rapid method for the monitoring of lactic acid fermentation (LAF) of milk. PTR‐TOF‐MS has been proposed as a very fast, highly sensitive and versatile technique but there have been no reports of its application to dynamic biochemical processes with relevance to the food industry. LAF is a biochemical‐physicochemical dynamic process particularly relevant for the dairy industry as it is an important step in the production of many dairy products. Further, LAF is important in the utilization of the by‐products of the cheese industry, such as whey wastewaters. We show that PTR‐TOF‐MS is a powerful method for the monitoring of major volatile organic chemicals (VOCs) formed or depleted during LAF, including acetaldehyde, diacetyl, acetoin and 2‐propanone, and it also provides information about the evolution of minor VOCs such as acetic acid, 2,3‐pentanedione, ethanol, and off‐flavor related VOCs such as dimethyl sulfide and furfural. This can be very important considering that the conventional measurement of pH decrease during LAF is often ineffective due to the reduced response of pH electrodes resulting from the formation of protein sediments. Solid‐phase microextraction gas chromatography/mass spectrometry (SPME‐GC/MS) data on the inoculated milk base and final fermented product are also presented to supporting peak identification. We demonstrate that PTR‐TOF‐MS can be used as a rapid, efficient and non‐invasive method for the monitoring of LAF from headspace, supplying important data about the quality of the final product and that it may be used to monitor the efficacy of manufacturing practices. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Accurate mass measurement (used to determine elemental formulae) is an essential tool for impurity identification in pharmaceutical development for process understanding. Accurate mass liquid chromatography/mass spectrometry (LC/MS) is used widely for these types of analyses; however, there are still many occasions when gas chromatography (GC)/MS is the appropriate technique. Therefore, the provision of robust technology to provide accurate mass GC/MS (and GC/MS/MS) for this type of activity is essential. In this report we describe the optimisation and application of a newly available atmospheric pressure chemical ionisation (APCI) interface to couple GC to time‐of‐flight (TOF) MS. To fully test the potential of the new interface the APCI source conditions were optimised, using a number of standard compounds, with a variety of structures, as used in synthesis at AstraZeneca. These compounds were subsequently analysed by GC/APCI‐TOF MS. This study was carried out to evaluate the range of compounds that are amenable to analysis using this technique. The range of compounds that can be detected and characterised using the technique was found to be extremely broad and include apolar hydrocarbons such as toluene. Both protonated molecules ([M + H]+) and radical cations (M+.) were observed in the mass spectra produced by APCI, along with additional ion signals such as [M + H + O]+. The technique has been successfully applied to the identification of impurities in reaction mixtures from organic synthesis in process development. A typical mass accuracy of 1–2 mm/zunits (m/z 80–500) was achieved allowing the reaction impurities to be identified based on their elemental formulae. These results clearly demonstrate the potential of the technique as a tool for problem solving and process understanding in pharmaceutical development. The reaction mixtures were also analysed by GC/electron ionisation (EI)‐MS and GC/chemical ionisation (CI)‐MS to understand the capability of GC/APCI‐MS relative to these two firmly established techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
LUS‐1 typed nanoporous silica particles were synthesized and silylated with hexamethyldisilazane and investigated as a highly porous fiber coating for solid‐phase microextraction (SPME). The pore size distribution of the prepared Sil‐LUS‐1 was still typical of MCM‐41 and centered at 3 nm with a specific surface area of 720 m2g?1. The SPME fiber was prepared by liming the material on a copper wire. The extraction efficiency of the new fiber was compared with a commercial PDMS fiber for headspace extraction and GC‐MS analysis of phenol, 4‐nitrophenol, 2,4‐dichlorophenol and 4‐chlorophenol in water samples. Due to the high porosity of the prepared fiber it showed a higher sensitivity and better selectivity for the extraction of the target compounds. For optimization of different factors affecting the extraction efficiency, a simplex optimization method was used. The relative standard deviation for the measurements by one fiber was better than 7% for five replicates and the fiber‐to‐fiber reproducibility was about 10% for five fabricated fibers. Detection limits in the range of 0.002 to 0.026 μg mL?1 were obtained for the phenolic compounds. The fiber was successfully applied for the determination of phenolic compounds in natural water samples.  相似文献   

13.
In Part A, we adopted principal component analysis (PCA) for the analysis of TOF‐SIMS data to assess the binding specificity of GBP‐1 to metallic Au, Ag and Pd. Within a given set of data, PCA aids in the interpretation of the TOF‐SIMS spectra by capitalizing on the differences from one spectrum to another. In Part B, we introduce another multivariate statistical method called ‘hierarchical cluster analysis (HCA)’, where visualization of the similarity and difference in data is readily observed, from which a variety of adsorption conditions of GBP‐1 were characterized. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Head-space solid phase microextration (SPME), followed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS), has been implemented for the analysis of honey volatiles, with emphasis on the optimal selection of SPME fibre and the first- and second-dimension GC capillaries. From seven SPME fibres investigated, a divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) 50/30 microm fibre provided the best sorption capacity and the broadest range of volatiles extracted from the headspace of a mixed honey sample. A combination of DB-5ms x SUPELCOWAX 10 columns enabled the best resolution of sample components compared to the other two tested column configurations. Employing this powerful analytical strategy led to the identification of 164 volatile compounds present in a honey mixture during a 19-min GC run. Combination of this simple and inexpensive SPME-based sampling/concentration technique with the advanced separation/identification approach represented by GCxGC-TOFMS allows a rapid and comprehensive examination of the honey volatiles profile. In this way, the laboratory sample throughput can be increased significantly and, at the same time, the risk of erroneous identification, which cannot be avoided in one-dimensional GC separation, is minimised.  相似文献   

15.
This paper describes the use of headspace solid-phase microextraction (SPME) combined with gas chromatography to identify the signature odors that law enforcement-certified detector dogs alert to when searching for drugs, explosives, and humans. Background information is provided on the many types of detector dog available and specific samples highlighted in this paper are the drugs cocaine and 3,4-methylenedioxy-N-methylamphetamine (MDMA or Ecstasy), the explosives TNT and C4, and human remains. Studies include the analysis and identification of the headspace "fingerprint" of a variety of samples, followed by completion of double-blind dog trials of the individual components in an attempt to isolate and understand the target compounds that dogs alert to. SPME–GC/MS has been demonstrated to have a unique capability for the extraction of volatiles from the headspace of forensic specimens including drugs and explosives and shows great potential to aid in the investigation and understanding of the complicated process of canine odor detection. Major variables evaluated for the headspace SPME included fiber chemistry and a variety of sampling times ranging from several hours to several seconds and the resultant effect on ratios of isolated volatile components. For the drug odor studies, the CW/DVB and PDMS SPME fibers proved to be the optimal fiber types. For explosives, the results demonstrated that the best fibers in field and laboratory applications were PDMS and CW/DVB, respectively. Gas chromatography with electron capture detector (GC/ECD) and mass spectrometry (GC/MS) was better for analysis of nitromethane and TNT odors, and C-4 odors, respectively. Field studies with detector dogs have demonstrated possible candidates for new pseudo scents as well as the potential use of controlled permeation devices as non-hazardous training aids providing consistent permeation of target odors.  相似文献   

16.
The solvent‐enhanced headspace sorptive extraction technique aims at modifying PDMS polarity using a solvent to increase its concentration capability. In solvent‐enhanced headspace sorptive extraction, a PDMS tubing closed at both ends by small glass stoppers and filled with an organic solvent is suspended in the sample headspace for a fixed time. After sampling, the sampled analytes are recovered from the PDMS tubing by thermal desorption and online transferred to a GC–flame ionization detector or GC‐MS system for analysis. Cyclohexane, iso‐octane, ethyl acetate, acetone, acetonitrile and methanol were tested as PDMS modifiers to sample the volatile fractions of sage (Salvia lavandulifolia Vahl.), thyme (Thymus vulgaris L.) and roasted coffee. Ethyl acetate was found to be the most effective PDMS modifier for all matrices investigated; although to a lesser extent, cyclohexane also increased component recoveries with sage and thyme. Acetone, acetonitrile and methanol did not increase PDMS recovery, while isooctane was excluded because of its interaction with the polymer. The results show that solvent‐modified PDMS extends the range of sampled headspace components with different polarities, increases the recovery of many of them, improves sensitivity in trace analysis, speeds up recovery and gives repeatability comparable with that of unmodified PDMS.  相似文献   

17.
The aim of this study was the optimization of headspace SPME conditions for trapping diterpenes present in frankincense (olibanum). Diterpenes like cembrenes or incensole and its derivatives are characteristic of olibanum. So in order to detect by SPME the occurrence of olibanum in archeological objects, it appears essential to have the best extraction conditions for these diterpenes that will be in very small quantities. Both sampling time and extraction temperature were studied and five fiber coatings were tested: polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB), carboxen/polydimethylsiloxane (CAR/PDMS), divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) and carbowax/divinylbenzene (CW/DVB). The PDMS/DVB fiber was found to be the most efficient for trapping olibanum characteristic diterpenes, with a sampling time of 1 h and a sampling temperature of 80 degrees C.  相似文献   

18.
Herbal formulations are complex natural mixtures. Researchers usually tend to focus more on analysis of nonvolatile components but pay less attention to volatile compounds. In this study, an analytical strategy combining two approaches was established for comprehensive analysis of herbal formulations. Guizhi Fuling capsule (GFC), a drug approved by the FDA to enter phase II clinical trial for treatment of primary dysmenorrhea, was taken as a case for analysis. Gas chromatography–mass spectrometry (GC‐MS) with automated mass spectral deconvolution and identification system (AMDIS) led to rapid identification of 48 volatile components including four acetophenones, three fatty acid esters, 13 phenylpropanoids and 19 sesquiterpenes. Most of them were found from Guizhi. The volatile oils of Guizhi have been proved to exhibit many pharmacological activities. This is helpful in understanding the pharmacological mechanism of GFC. Furthermore, AMDIS turned out to be efficient and reliable for analysis of complex herbal formulations. Rapid‐resolution liquid chromatography (RRLC) coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (ESI‐Q‐TOF MS/MS) allowed the identification of 70 nonvolatile components including six acetophenones, 12 galloyl glucoses, 31 monoterpene glycosides, three phenols and 12 triterpene acids. Fragmentation behaviors of assigned components, especially triterpene acids, which are hard to identify by low‐resolution MS, were first investigated by TOF MS/MS. Characteristic ions and typical loss of assigned triterpene acids were summarized. Combinatorial use of GC‐MS‐AMDIS and RRLC‐ESI‐Q‐TOF MS/MS could be of great help in global qualitative analysis of GFC, as well as other herbal products. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
田孟魁  冯喜兰 《中国化学》2008,26(7):1251-1256
建立了顶空固相微萃取联结气相色谱-电子捕获检测器(HS-SPME-GC-ECD)测定水中多溴联苯醚的方法。制作了多壁碳纳米管涂层固相微萃取探头。优化了萃取时间,萃取温度,搅拌速度,顶空体积,溶液的pH,离子强度及有机溶剂等影响萃取效率的各种因素。比较了室温和100 ℃顶空萃取和直接萃取的效率。结果表明,室温下直接萃取比顶空萃取的效率高2-4倍,而在100 ℃时顶空萃取比直接萃取的效率高1-8倍。除BDE-154外,无论直接萃取还是顶空萃取,100 ℃时的萃取效率均高于室温。方法的线性范围50-1600 ng/L,相关系数为0.995-0.998,5种多溴联苯醚的最低检出限(S/N=3)为1.14-16.25 ng/L,相对标准偏差(RSD%,n=5)小于10%。本方法用于真实水样的测定,回收率为74.2%-98.7%。  相似文献   

20.
Desorption electrospray ionisation mass spectrometry (DESI‐MS) was recently reported for the direct analysis of sample media without the need for additional sample handling. During the present study, direct analysis of solid‐phase microextraction (SPME) fibers by DESI‐MS/MS was evaluated with indoor office media that might be collected during a forensic investigation, including wall surfaces, office fabrics, paper products and Dacron swabs used for liquid sampling. Media spiked at the µg/g level with purified chemical warfare agents and a complex munitions grade sample of tabun, to simulate the quality of chemical warfare agent that might be used for terrorist purposes, were successfully analysed by DESI‐MS/MS. Sulfur mustard, a compound that has not been successfully analysed by electrospray mass spectrometry in the past, was also sampled using a SPME fiber and analysed for the first time by DESI‐MS/MS. Finally, the overall analytical approach involving SPME headspace sampling and DESI‐MS analysis was evaluated during a scenario‐based training live agent exercise. A sarin sample collected by the military was analysed and confirmed by DESI‐MS in a mobile laboratory under realistic field conditions. Copyright © 2007 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号