首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A variational multiscale method has been presented for efficient analysis of elastoplastic deformation problems. Severe deformation occurs in plastic region and leads to high gradient displacement. Therefore, solution needs to be refined to properly capture local deformation in plastic region. In this work, scale decomposition based on variational formulation is presented. A coarse scale and a fine scale are introduced to represent global and local behavior, respectively. The displacement is decomposed into a coarse and a fine scale. Subsequently the problem is also decomposed into a coarse and a fine scale from the variational formulation. Each scale variable is approximated using meshfree method. Adaptivity can easily and nicely be implemented in meshfree method. As a method of increasing resolution, extrinsic enrichment of partition of unity is used. Each scale problem is solved iteratively and conversed results are obtained consequently. Iteration procedure is indispensable for the elastoplastic deformation analysis. Therefore iterative solution procedure of each scale problem is naturally adequate. The proposed method is applied to the Prandtl’s punch test and shear band problem. The results are compared with those of other methods and the validity of the proposed method is demonstrated.  相似文献   

2.
The diffuse mode bifurcation of elastoplastic solids at finite strain is investigated. The multiplicative decomposition of deformation gradient and the hyperelasto-plastic constitutive relationship are adapted to the numerical bifurcation analysis of the elastoplastic solids. First, bifurcation analyses of rectangular plane strain specimens subjected to uniaxial compression are conducted. The onset of the diffuse mode bifurcations from a homogeneous state is detected; moreover, the post-bifurcation states for these modes are traced to arrive at localization to narrow band zones, which look like shear bands. The occurrence of diffuse mode bifurcation, followed by localization, is advanced as a possible mechanism to create complex deformation and localization patterns, such as shear bands. These computational diffuse modes and localization zones are shown to be in good agreement with the associated experimental ones observed for sand specimens to ensure the validity of this mechanism. Next, the degradation of horizontal sway stiffness of a rectangular specimen due to plane strain uniaxial compression is pointed out as a cause of the bifurcation of the first antisymmetric diffuse mode, which triggers the tilting of the specimen. Last, circular and punching failures of a footing on a foundation are simulated.  相似文献   

3.
In this work, we postulate the physical criterion for dynamic shear band propagation, and based on this assumption, we implement a numerical algorithm and a computation criterion to simulate initiation and propagation of dynamic adiabatic shear bands (ASBs). The physical criterion is based on the hypothesis that material inside the shear band region undergoes a dynamic recrystallization process during deformation under high temperature and high strain-rate conditions. In addition to providing a new perspective to the physics of the adiabatic shearbanding process and identifying material properties that play a crucial role in defining the material's susceptibility to ASBs, the proposed criterion is instrumental in numerical simulations of the propagation of ASBs when multi-physics models are adopted to describe and predict the complex constitutive behavior of ASBs in ductile materials. Systematic and large scale meshfree simulations have been conducted to test and validate the proposed criterion by examining the formation, propagation, and post-bifurcation behaviors of ASBs in two materials, 4340 steel and OFHC copper. The effects of heat conduction, in particular the length scale introduced by heat conduction, are also studied. The results of the numerical simulations are compared with experimental observations and a close agreement is found for various characteristic features of ASBs, such as the shear band width, speed of propagation, and maximum temperature.  相似文献   

4.
T of two-dimensional linear disturbances to the simple shear deformation of viscoplastic hardening/softening solids and its consequences on the localization of the plastic flow into shear bands are investigated. Attention is focused on the orientation features of shear banding. A local analysis is carried out on the basis of a generalized Orr-Sommerfeld equation ; the classic time-independent characteristic lines theory is embedded in a time-dependent analysis. It is shown that the characteristic directions are not equivalent when the time evolution is considered, owing to the convective nature of the shear banding instability. The transition between a time-independent behavior for which a pair of shear bands occurs abruptly along the characteristic directions, and a time-dependent regime where a single shear band goes to completion in the shearing direction is discussed.  相似文献   

5.
基于局部弱式和强式配点相结合的无网格弱-强式法(meshfree weak-strong method,MWS)求解中厚板问题.MWS法对问题域使用整体离散节点表征和强形式配点法进行计算,在自然边界条件上或靠近自然边界条件的区域采用局部弱形式Petrov-Cralerkin法计算,用移动最小二乘法或径向点插值法来构造形函数,是一种理想的真正无网格法.采取MWS法,文中计算了中厚板的弯曲问题和能量误差.算例结果和对比分析表明,无网格弱-强式法(MWS)可以自然协调处理两类边界条件,计算效率高、数值结果稳定;对计算域采用规则节点布置,其解与弹性力学理论解以及有限元解都吻合很好.  相似文献   

6.
Classical elastoplastic theory predicts that the rotation angle near an interface between two mismatched materials is discontinuous under shear. The strain gradient effects, however, can be significant within a narrow region near the interface. This can be shown by application of the strain gradient plasticity. The matching expansion method was used to obtain asymptotic results. Comparison is then made with those found numerically for the interface torsion problem of a two-layered cylindrical tube. The strain gradient plasticity theory solution differs from that of the classical elastoplastic theory solution, depending on the properties aside from the interface behavior and the loading mode. A failure criterion is also proposed that accounts for the strain gradients.  相似文献   

7.
Influence of void nucleation on ductile shear fracture at a free surface   总被引:7,自引:0,他引:7  
An approximate continuum model of a ductile, porous material is used to study the influence of the nucleation and growth of micro-voids on the formation of shear bands and the occurrence of surface shear fracture in a solid subject to plane strain tension. Bifurcation into diffuse modes is analysed for a plane strain tensile specimen described by these constitutive relations, which account for a considerable plastic dilatancy due to void growth and for the possibility of non-normality of the plastic flow law. In particular, bifurcation into surface wave modes and the possible influence of such modes triggering shear bands is investigated. For solids with initial imperfactions such as a surface undulation, a local material inhomogeneity on an inclusion colony, the inception and growth of plastic flow localization is analysed numerically. Both the formation of void-sheets and the final growth of cracks in the shear bands is described numerically. Some special features of shear band development in the solid obeying non-normality are studied by a simple model problem.  相似文献   

8.
An extended meshfree method is presented for the analysis of a laminated anisotropic plate under elastostatic loading. The plate may be of any planform shape with its thickness profile composed of perfectly bonded uniform thickness layers of distinct anisotropic materials. Both transverse and inplane loads are considered using a first order shear deformation theory for flexural behavior and generalized plane stress for the membrane behavior. In this extended meshfree method, a rectangular domain is initially considered with the plate of arbitrary geometry inscribed within it. A particular solution in the form of an analytic generalized Navier solution (a compound double Fourier series) is used to capture the response due to the loading within the rectangular domain. Then, a homogeneous solution by meshfree analysis is added to treat the augmented boundary conditions on the actual contour of the plate. These augmented conditions are composed of the prescribed values and that of the particular solution evaluated around the plate’s contour.Concentrated transverse and inplane loads in the form of uniform loads over a very small patch are considered with this generalized Navier solution representation. When a meshfree portion is added to account for the boundary conditions, such solutions constitute the Green’s functions for the plate. The viability of these double Fourier series representations is shown by the convergence rates for the kinematic and force/moment fields. An additional example of a two layer ±30° angleply circular plate is given to illustrate the capability of this extended meshfree method.  相似文献   

9.
The work is concerned with the modeling and simulation of large scale ductile fracture in plate and shell structures. A meshfree method – the reproducing kernel particle method (RKPM) – is used in numerical computations in order to enact dynamic crack propagation without remeshing. There are several novelties in the present approach. First, we have developed a crack surface approximation and particle split algorithm for three-dimensional through-thickness cracks. Second, to represent evolving crack surface in 3D shell structures, a 3D parametric visibility condition algorithm is proposed, which re-constructs the local connectivity map for particles near the crack tip or crack surfaces, so that the meshfree interpolation field can represent physical material separation in the computational domain. Third, the constitutive update formulas in explicit time integration by different versions of Gurson models and the rate-dependent Johnson–Cook model are implemented for 3D computations. Finally, the performance of different Gurson-type models are investigated and compared with the experimental data of large scale in-plate tear process. Numerical simulations of crack propagation in stiffened plates and shells demonstrate that the proposed method provides an effective means to simulate ductile fracture in large scale plate/shell structures with engineering accuracy.  相似文献   

10.
固体材料的应变局部化行为是导致结构破坏失效的重要因素之一,开展相关数值模拟分析对于结构安全性评估具有重要意义.然而由于材料的非均质和多尺度特性,采用传统数值方法进行求解时通常需要从最小特征尺度离散求解的结构,这将大幅度增加计算规模和成本.针对这一问题,本文提出了一种基于嵌入强间断模型的多尺度有限元方法.该方法从粗细两个尺度离散求解模型,首先在细尺度单元上引入嵌入强间断模型来描述单元间断特性,所附加的跳跃位移自由度则通过凝聚技术进行消除,从而保持细尺度单元刚度阵维度不变.其次,提出了一种增强多节点粗单元技术,其可根据局部化带与粗单元边界相交情况自适应动态地增加粗节点,新构造的增强数值基函数可以捕捉细尺度间断特性,完成物理信息从细单元到粗单元的准确传递以及宏观响应的快速分析;再次,在细尺度解的计算中,将细尺度解分解为降尺度解与单胞局部摄动解,从而消除弹塑性分析时单胞内部的不平衡力.最后,通过两个典型算例分析,并与完全采用细单元的嵌入有限元结果进行对比,验证了所提出算法的正确性与有效性.  相似文献   

11.
In this study, a general framework is developed to analyze microscopic bifurcation and post-bifurcation behavior of elastoplastic, periodic cellular solids. The framework is built on the basis of a two-scale theory, called a homogenization theory, of the updated Lagrangian type. We thus derive the eigenmode problem of microscopic bifurcation and the orthogonality to be satisfied by the eigenmodes. The orthogonality allows the macroscopic increments to be independent of the eigenmodes, resulting in a simple procedure of the elastoplastic post-bifurcation analysis based on the notion of comparison solids. By use of this framework, then, bifurcation and post-bifurcation analysis are performed for cell aggregates of an elastoplastic honeycomb subject to in-plane compression. Thus, demonstrating a basic, long-wave eigenmode of microscopic bifurcation under uniaxial compression, it is shown that the eigenmode has the longitudinal component dominant to the transverse component and consequently causes microscopic buckling to localize in a cell row perpendicular to the loading axis. It is further shown that under equi-biaxial compression, the flower-like buckling mode having occurred in a macroscopically stable state changes into an asymmetric, long-wave mode due to the sextuple bifurcation in a macroscopically unstable state, leading to the localization of microscopic buckling in deltaic areas.  相似文献   

12.
双剪统一弹塑性有限差分方法研究   总被引:3,自引:1,他引:2  
基于拉格朗日有限差分方法,建立了双剪统一弹塑性有限差分计算格式,并利用VC++语言编写动态链接库文件将双剪统一弹塑性模型导入拉格朗日有限差分程序FLAC(Fast Lagrangian Analysis of Continua)中进行计算分析。双剪统一弹塑性有限差分方法可以模拟复杂应力状态下结构的渐进破坏,无需形成刚度矩阵,对于材料非线性问题无需进行迭代计算,因此在理论和工程应用中都有积极的意义。本文利用双剪统一弹塑性有限差分方法对拉压强度不等材料的厚壁圆筒受内压、中心带孔板条受拉压、条形基础下的地基极限分析及边坡问题进行了数值分析并与滑移线场等解析方法计算结果进行对比,结果均吻合较好。  相似文献   

13.
A static meshfree implementation of the bond-based peridynamics formulation for linearly elastic solids is applied to the study of the transition from local to nonlocal behavior of the stress and displacement fields in the vicinity of a crack front and other sources of stress concentration. The long-range nature of the interactions between material points that is intrinsic to and can be modulated within peridynamics enables the smooth transition from the square-root singular stress fields predicted by the classical (local) linear theory of elasticity, to the nonsingular fields associated with nonlocal theories. The accuracy of the peridynamics scheme and the transition from local to nonlocal behavior, which are dictated by the lattice spacing and micromodulus function, are assessed by performing an analysis of the boundary layer that surrounds the front of a two dimensional crack subjected to mode-I loading and of a cracked plate subjected to far-field tension.  相似文献   

14.
基于偶应力理论剪切带问题的弹塑性有限元分析   总被引:3,自引:0,他引:3  
冀宾  陈万吉  赵杰 《力学学报》2009,41(2):192-199
对于软化材料的剪切带问题,传统弹塑性有限元分析遇到了困难,进入弹塑性阶段,计算结果对网格划分敏感,出现所谓的有限元网格依赖性问题,随着网格的细分,计算常常因不收敛导致失效. 用有限元软件ABAQUS计算了3个例题,证实了传统弹塑性有限元分析软化材料剪切带问题的局限性,同时证实对于无剪切带的厚壁筒问题不会出现上述问题. 进一步引入细观非局部化理论,对非局部理论含有的细观参数\ell进行了深入讨论,并采用可通过C0 -1分片检验的18参偶应力三角形单元,重新计算了3个例题,结果避免了上述问题,说明细观偶应力有限元尤其适用于分析剪切带问题.   相似文献   

15.
Higher order gradient continuum theories have often been proposed as models for solids that exhibit localization of deformation (in the form of shear bands) at sufficiently high levels of strain. These models incorporate a length scale for the localized deformation zone and are either postulated or justified from micromechanical considerations. Of interest here is the consistent derivation of such models from a given microstructure and the subsequent comparison of the solution to a boundary value problem using both the exact microscopic model and the corresponding approximate higher order gradient macroscopic model.In the interest of simplicity the microscopic model is a discrete periodic nonlinear elastic structure. The corresponding macroscopic model derived from it is a continuum model involving higher order gradients in the displacements. Attention is focused on the simplest such model, namely the one whose energy density involves only the second order gradient of the displacement. The discrete to continuum comparisons are done for a boundary value problem involving two different types of macroscopic material behavior. In addition the issues of stability and imperfection sensitivity of the solutions are also investigated.  相似文献   

16.
Shear transformations (i.e., localized rearrangements of particles resulting in the shear deformation of a small region of the sample) are the building blocks of mesoscale models for the flow of disordered solids. In order to compute the time-dependent response of the solid material to such a shear transformation, with a proper account of elastic heterogeneity and shear wave propagation, we propose and implement a very simple Finite-Element (FE)-based method. Molecular Dynamics (MD) simulations of a binary Lennard–Jones glass are used as a benchmark for comparison, and information about the microscopic viscosity and the local elastic constants is directly extracted from the MD system and used as input in FE. We find very good agreement between FE and MD regarding the temporal evolution of the disorder-averaged displacement field induced by a shear transformation, which turns out to coincide with the response of a uniform elastic medium. However, fluctuations are relatively large, and their magnitude is satisfactorily captured by the FE simulations of an elastically heterogeneous system. Besides, accounting for elastic anisotropy on the mesoscale is not crucial in this respect.The proposed method thus paves the way for models of the rheology of amorphous solids which are both computationally efficient and realistic, in that structural disorder and inertial effects are accounted for.  相似文献   

17.
Investigation of transient dynamic stress intensity factors (DSIFs) of two-dimensional fracture problems of isotropic solids and orthotropic composites by an extended meshfree method is described. We adopt the recently developed extended meshfree radial point interpolation method (X-RPIM), which combines either the standard branch functions or the new linear ramp function associated with Heaviside functions to capture crack-tip behaviors. It is the first time the linear ramp function integrating into meshfree X-RPIM has been presented in a dynamical fracture context. We are particularly interested in exploring insight into the behaviors of DSIFs under dynamic impact loadings (e.g., step, blast and sine loading types) using our meshfree method. For some of these problems numerical examples have been performed using the new ramp functions, and the obtained results of DSIFs have also been compared with those using the standard enrichment functions under which the two schemes have the same setting. In each case it is found that the numerical solutions delivered using the X-RPIM associated with the ramp enrichments are in good agreement with those with the standard functions. The paper first describes formulations and then provides verification of our developed approach through a series of numerical examples in transient dynamic fracture for both solids and orthotropic composites. Illustration of scattered elastic stress waves propagating in the cracked body is depicted to take an insight look at the behavior of dynamic response.  相似文献   

18.
A meshfree weak–strong (MWS) form method has been proposed by the authors' group for linear solid mechanics problems based on a combined weak and strong form of governing equations. This paper formulates the MWS method for the incompressible Navier–Stokes equations that is non‐linear in nature. In this method, the meshfree collocation method based on strong form equations is applied to the interior nodes and the nodes on the essential boundaries; the local Petrov–Galerkin weak form is applied only to the nodes on the natural boundaries of the problem domain. The MWS method is then applied to simulate the steady problem of natural convection in an enclosed domain and the unsteady problem of viscous flow around a circular cylinder using both regular and irregular nodal distributions. The simulation results are validated by comparing with those of other numerical methods as well as experimental data. It is demonstrated that the MWS method has very good efficiency and accuracy for fluid flow problems. It works perfectly well for irregular nodes using only local quadrature cells for nodes on the natural boundary, which can be generated without any difficulty. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
While localization of deformation at macroscopic scales has been documented and carefully characterized long ago, it is only recently that systematic experimental investigations have demonstrated that plastic flow of crystalline solids on mesoscopic scales proceeds in a strongly heterogenous and intermittent manner. In fact, deformation is characterized by intermittent bursts (‘slip avalanches’) the sizes of which obey power-law statistics. In the spatial domain, these avalanches produce characteristic deformation patterns in the form of slip lines and slip bands. Unlike to the case of macroscopic localization where gradient plasticity can capture the width and spacing of shear bands in the softening regime of the stress–strain graph, this type of mesoscopically jerky like localized plastic flow is observed in spite of a globally convex stress–strain relationship and may not be captured by standard deterministic continuum modelling. We thus propose a generalized constitutive model which includes both second-order strain gradients and randomness in the local stress–strain relationship. These features are related to the internal stresses which govern dislocation motion on microscopic scales. It is shown that the model can successfully describe experimental observations on slip avalanches as well as the associated surface morphology characteristics.  相似文献   

20.
A thermal-mechanical multiresolution continuum theory is applied within a finite element framework to model the initiation and propagation of dynamic shear bands in a steel alloy. The shear instability and subsequent stress collapse, which are responsible for dynamic adiabatic shear band propagation, are captured by including the effects of shear driven microvoid damage in a single constitutive model. The shear band width during propagation is controlled via a combination of thermal conductance and an embedded evolving length scale parameter present in the multiresolution continuum formulation. In particular, as the material reaches a shear instability and begins to soften, the dominant length scale parameter (and hence shear band width) transitions from the alloy grain size to the spacing between micro-voids. Emphasis is placed on modeling stress collapse due to micro-void damage while simultaneously capturing the appropriate scale of inhomogeneous deformation. The goal is to assist in the microscale optimization of alloys which are susceptible to shear band failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号