首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper develops a novel nonlinear numerical method to perform shakedown analysis of structures subjected to variable loads by means of nonlinear programming techniques and the displacement-based finite element method. The analysis is based on a general yield function which can take the form of most soil yield criteria (e.g. the Mohr–Coulomb or Drucker–Prager criterion). Using an associated flow rule, a general yield criterion can be directly introduced into the kinematic theorem of shakedown analysis without linearization. The plastic dissipation power can then be expressed in terms of the kinematically admissible velocity and a nonlinear formulation is obtained. By means of nonlinear mathematical programming techniques and the finite element method, a numerical model for kinematic shakedown analysis is developed as a nonlinear mathematical programming problem subject to only a small number of equality constraints. The objective function corresponds to the plastic dissipation power which is to be minimized and an upper bound to the shakedown load can be calculated. An effective, direct iterative algorithm is then proposed to solve the resulting nonlinear programming problem. The calculation is based on the kinematically admissible velocity with one-step calculation of the elastic stress field. Only a small number of equality constraints are introduced and the computational effort is very modest. The effectiveness and efficiency of the proposed numerical method have been validated by several numerical examples.  相似文献   

2.
Employing repeating unit cell (RUC) to represent the microstructure of periodic composite materials, this paper develops a numerical technique to calculate the plastic limit loads and failure modes of composites by means of homogenization technique and limit analysis in conjunction with the displacement-based finite element method. With the aid of homogenization theory, the classical kinematic limit theorem is generalized to incorporate the microstructure of composites. Using an associated flow rule, the plastic dissipation power for an ellipsoid yield criterion is expressed in terms of the kinematically admissible velocity. Based on nonlinear mathematical programming techniques, the finite element modelling of kinematic limit analysis is then developed as a nonlinear mathematical programming problem subject to only a small number of equality constraints. The objective function corresponds to the plastic dissipation power which is to be minimized and an upper bound to the limit load of a composite is then obtained. The nonlinear formulation has a very small number of constraints and requires much less computational effort than a linear formulation. An effective, direct iterative algorithm is proposed to solve the resulting nonlinear programming problem. The effectiveness and efficiency of the proposed method have been validated by several numerical examples. The proposed method can provide theoretical foundation and serve as a powerful numerical tool for the engineering design of composite materials.  相似文献   

3.
The load-bearing capacities of ductile composite materials and structures are studied by means of a combined micro/macromechanics approach. Firstly, on the microscopic scale, the aim is to get the macroscopic strength domains by means of the homogenization theory of micromechanics. A representative volume element (RVE) is selected to reflect the microstructures of the composite materials. By introducing the homogenization theory into the kinematic limit theorem of plastic limit analysis, an optimization format to directly calculate the limit loads of the RVE is obtained. And the macroscopic yield criterion can be determined according to the relation between macroscopic and microscopic fields. Secondly, on the macroscopic scale, by introducing the Hill's yield criterion into the kinematic limit theorem, the limit loads of orthotropic structures such as unidirectional fiber-reinforced composite structures are worked out. The finite element modeling of the kinematic limit analysis is deduced into a nonlinear mathematical programming with equality-constraint conditions that can be solved by means of a direct iterative algorithm. Finally, some examples are illustrated to show the application of the present approach. Project supported by the National Natural Science Foundation of China (No. 19902007), the National Foundation for Excellent Doctoral Dissertation of China (No. 200025), the Fund of the Ministry of Education of China for Returned Oversea Scholars and the Basic Research Foundation of Tsinghua University.  相似文献   

4.
多孔材料塑性极限载荷及其破坏模式分析   总被引:4,自引:1,他引:4  
运用塑性力学中的机动极限分析理论,研究韧性基体多孔材料的塑性极限承载能力和破坏模式。以多孔材料的细观结构为研究对象,将细观力学中的均匀化理论引入到塑性极限分析中,并结合有限元技术,建立细观结构极限载荷的一般计算格式,并提出相应的求解算法。数值算例表明:细观孔洞对材料的宏观强度影响明显;在单向拉伸作用下,孔洞呈现膨胀扩大规律;多孔材料破坏源于基体塑性区的贯通。  相似文献   

5.
基于均匀化理论韧性复合材料塑性极限分析   总被引:6,自引:0,他引:6  
运用细观力学中的均匀化方法分析了韧性复合材料的塑性极限承载能力.从反映复合材料细观结构的代表性胞元入手,将均匀化理论运用到塑性极限分析中,计算由理想刚塑性、Mises组分材料构成的复合材料的极限承载能力.运用机动极限方法和有限元技术,最终将上述问题归结为求解一组带等式约束的非线性数学规划问题,并采用一种无搜索直接迭代算法求解.为复合材料的强度分析提供了一个有效手段.  相似文献   

6.
The load-bearing capacity of ductile composite structures comprised of periodic composites is studied by a combined micro/macromechanicai approach. Firstly, on the microscopic level, a representative volume element (RVE) is selected to reflect the microstructures of the composite materials and the constituents are assumed to be elastic perfectly-plastic. Based on the homogenization theory and the static limit theorem, an optimization formulation to directly calculate the macroscopic strength domain of the RVE is obtained. The finite element modeling of the static limit analysis is formulated as a nonlinear mathematical programming and solved by the sequential quadratic programming method, where the temperature parameter method is used to construct the self-stress field. Secondly, Hill's yield criterion is adopted to connect the micromechanicai and macromechanical analyses. And the limit loads of composite structures are worked out on the macroscopic scale. Finally, some examples and comparisons are shown.  相似文献   

7.
采用极限分析下限原理求解了岩土工程中基础的极限载力和边坡的安全系数。求解过程中把有限元法和非线性规划相结合,把整个结构离散化,设定每个结点的应力,把原问题变成一个以边坡的稳定安全系数或基础的极限承载力为目标函数,以结点应力为优化变量,以对可静应力场的各种制约为约束条件的非线性规划问题。采用序列二次规划法求解该非线性规划问题,得到了人为构造的严格满足应力边界条件、平衡微分方程、不违反Mohr-Coulomb或Drucker-Prager屈服准则的应力场,解决了三维可静应力场的构造问题。算例分析表明,本文的方法是正确、可行的。  相似文献   

8.
将有限元方法引入到塑性极限分析中,采用刚体有限元离散挡土墙后土体计算区域, 同时构造运动许可速度场,在满足屈服条件、流动法则、虚功方程以及相应的边界条件的基 础上,建立约束方程,引入数学规划方法求解挡土墙在不同变位模式下极限土压力分布. 算 例说明了该方法的正确性和有效性.  相似文献   

9.
This paper aims to determine the strength properties of jointed rock masses by means of the homogenization method.To reflect the microstructure of jointed rock masses,a representative element volume (R...  相似文献   

10.
基于自然单元法的极限上限分析   总被引:2,自引:0,他引:2  
自然单元法是一种基于离散点集的Voronoi图和Delaunay三角化几何信息,以自然邻近插值为试函数的新型数值方法.相对于一般无网格法中常采用的移动最小二乘近似而言,自然邻近插值不涉及到复杂的矩阵求逆运算,更不需要任何人为的参数,可以提高计算效率.采用该方法构造的形函数满足Delta函数的性质,可以像有限元一样准确地施加边界条件,可以方便处理场函数及其导数的不连续性的问题.论文将自然单元法应用到极限上限分析中,编制了相应的计算程序,通过极限分析的几个经典算例进行了验证,同时采用类似于分片应力磨平的方式,编制相应的磨平程序,由计算点上的塑性耗散功外推得到了节点上的塑性耗散功的值,从而画出了极限状态下结构的塑性耗散功的分布云图.计算结果表明采用自然单元法求解极限上限分析具有稳定性好,精度高,收敛快等优点.  相似文献   

11.
Our shakedown reduced kinematic formulation is developed to solve some typical plane stress problems, using finite element method. Whenever the comparisons are available, our results agree with the available ones in the literature. The advantage of our approach is its simplicity, computational effectiveness, and the separation of collapse modes for possible different treatments. Second-order cone programming developed for kinematic plastic limit analysis is effectively implemented to study the incremental plasticity collapse mode. The approach is ready to be used to solve general shakedown problems, including those for elastic–plastic kinematic hardening materials and under dynamic loading.  相似文献   

12.
Plastic constitutive relations are derived for a class of anisotropic porous materials consisting of coaxial spheroidal voids, arbitrarily oriented relative to the embedding orthotropic matrix. The derivations are based on nonlinear homogenization, limit analysis and micromechanics. A variational principle is formulated for the yield criterion of the effective medium and specialized to a spheroidal representative volume element containing a confocal spheroidal void and subjected to uniform boundary deformation. To obtain closed form equations for the effective yield locus, approximations are introduced in the limit-analysis based on a restricted set of admissible microscopic velocity fields. Evolution laws are also derived for the microstructure, defined in terms of void volume fraction, aspect ratio and orientation, using material incompressibility and Eshelby-like concentration tensors. The new yield criterion is an extension of the well known isotropic Gurson model. It also extends previous analyses of uncoupled effects of void shape and material anisotropy on the effective plastic behavior of solids containing voids. Preliminary comparisons with finite element calculations of voided cells show that the model captures non-trivial effects of anisotropy heretofore not picked up by void growth models.  相似文献   

13.
A mathematical programming algorithm for limit analysis   总被引:1,自引:0,他引:1  
This paper deals with the limit analyses of perfect rigid-plastic continua. Based on the kinematic theorem of the limit analysis theory, a mathematical programming finite element formula for determining the upper bound load multiplier has been established, and an iteration algorithm proposed accordingly. In this algorithm the plastic and rigid zones are distinguished for every iteration step, and the goal function is modified gradually. The difficulties caused by the nonsmoothness of the goal function are overcome. Some examples solved by this algorithm are presented. The project supported by National Natural Science Foundation of China.  相似文献   

14.
The classical upper bound approach of limit analysis is based on assumption of rigid blocks of deformation that move between lines of tangential displacement discontinuity. This assumption leads to considerable simplification but often at cost of higher estimate of the actual load. Moreover, in many cases, it does not give a correct shape of the plastic field. In order to overcome these limitations a modified upper bound approach is proposed in this article. The proposed approach is basically an energetic approach but unlike the classical upper bound approach it is capable of including presence of statically governed stress field. As an application, of proposed approach, theoretical plane strain solutions are presented for deeply cracked fracture mechanics specimens (single edge cracked specimen in pure bending – SE (PB), single edge cracked specimen in three-point bending – SE (B), and compact tension – C (T) specimens). Plane strain plasticity problem in rigid elastic–plastic mono-material (homogeneous) was solved to evaluate useful parameters like limit load, plastic eta function (ηp) and plastic rotation factor (rp) and in bi-material (mismatch welds) to evaluate mismatch limit load, for deeply cracked specimens. New kinematically admissible velocity fields are proposed for SE (B) and C (T) specimens. Proposed theoretical solutions were confirmed by classical slip-line field solutions, wherever available, and by detailed elastic–plastic finite element analysis with Von-Mises yield criterion. Good agreement was found between proposed solutions and results obtained from the classical slip-line field theory and finite element analysis.  相似文献   

15.
Abstract

In the kinematic theory of structures consisting of perfectly plastic elements, an inequality between the plastic dissipation work and the load work is used. This inequality, which we will term “the kinematic inequality,” must hold for all kinematically admissible mechanisms. These mechanisms are generated by certain parameters which usually remain in the kinematic inequality and which thereby preclude the general application of the kinematic approach. In this paper we overcome this difficulty in the case of frames and provide various applications of the method. By using new theorems we eliminate the parameters and reduce the kinematic inequality to a finite system of inequalities which depend only on frame geometry and on loads. Based on these theorems, a procedure is offered for deriving a system of independent inequalities for general multistory multibay frames. New theorems are then obtained regarding the existence and the rotation of certain plastic hinges in collapse mechanisms. The overall theory is illustrated by a specific example. Finally, the formulations obtained following our method are used to minimize the mass of a fixed-base rectangular portal frame for any length, height, and system of loads.  相似文献   

16.
确定复合材料宏观屈服准则的细观力学方法   总被引:3,自引:1,他引:3  
运用细观力学中的均匀化方法,分析了含周期性微结构复合材料的宏观屈服准则,并对Hill-Tsai准则进行了修正。从基于复合材料细观结构的代表性胞元入手,运用塑性极限理论中的机动分析以及有限元方法,计算了细观结构的极限载荷域。通过宏细观尺度对应关系,得到复合材料的宏观屈服准则。  相似文献   

17.
含缺陷结构的塑性极限分析   总被引:6,自引:1,他引:5  
结合极限分析中的数学规划理论和有限元技术,提出了三维含结构极限分析的数学规划方法,并采用罚函数法引入塑性不可压条件,对于考虑多组独立变化载荷作用的情况,提出了加载路径射线辐射求解方案,并基于这种射线射状的加载路径,推导了多组载荷联合作用下结构塑性极限上限分析的数学规划格式,编制了相应的有限元程序,文中的数值了该方法的正确性与有效性。  相似文献   

18.
The main purpose of this paper is to present a finite element formulation of the bound theorems which allows for the variation of soil strength with direction. To achieve this objective, the conventional isotropic Mohr-Coulomb yield criterion is generalised to include the effect of strength anisotropy. The finite element limit analysis formulation using the modified anisotropic yield criterion is then developed. Several examples are given in the paper to illustrate the capability and effectiveness of the proposed numerical procedure for computing rigorous bounds for anisotropic soils.  相似文献   

19.
Upper-bound limit analysis based on the natural element method   总被引:1,自引:0,他引:1  
The natural element method (NEM) is a newly-developed numerical method based on Voronoi diagram and Delaunay triangulation of scattered points, which adopts natural neighbour interpolation to construct trial functions in the framework of Galerkin method. Owing to its distinctive advantages, the NEM is used widely in many problems of computational mechanics. Utilizing the NEM, this paper deals with numerical limit analysis of structures made up of perfectly rigid-plastic material. According to kinematic theorem of plastic limit analysis, a mathematical programming natural element formulation is established for determining the upper bound multiplier of plane problems, and a direct iteration algorithm is proposed accordingly to solve it. In this algorithm, the plastic incompressibility condition is handled by two different treatments, and the nonlinearity and nonsmoothness of the goal function are overcome by distinguishing the rigid zones from the plastic zones at each iteration. The procedure implementation of iterative process is quite simple and effective because each iteration is equivalent to solving an associated elastic problem. The obtained limit load multiplier is proved to monotonically converge to the upper bound of true solution. Several benchmark examples are investigated to validate the significant performance of the NEM in the application field of limit analysis.  相似文献   

20.
采取16节点曲线边等参元对圆柱壳的几何非线性进行有限元分析. 分析考 虑了完全非线性运动关系以便预测在非线性区域的稳定平衡路径. 建立了基于广义非线性位 移的有限元公式. 提出了基于全Lagrangian格式的非线性有限元分析的并行计算策略. 在集 群环境下, 对圆柱壳的几何非线性分析进行了并行计算. 计算结果表明: 在集群环境下, 所提并行算法具有良好的加速比和效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号