首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the wave propagation and dynamic response of the rectangular FGM plates with completed clamped supports under impulse load are analyzed. The effective material properties of functionally graded materials (FGMs) for the plate are assumed to vary continuously through the plate thickness and be distributed according to a volume fraction power law along the plate thickness. Considering the effects of transverse shear deformation and rotary inertia, the governing equations of the wave propagation in the functionally graded plate are derived by using the Hamilton’s principle. A complete discussion of dispersion of the FGM plates is given. Using the dispersion relation and integral transforms, exact integral solutions for the FGM plates under impulse load are obtained. The influence of volume fraction distributions on wave propagation and dynamic response of the FGM plates is analyzed.  相似文献   

2.
A new trigonometric shear deformation theory for isotropic and composite laminated and sandwich plates, is developed. The new displacement field depends on a parameter “m”, whose value is determined so as to give results closest to the 3D elasticity bending solutions. The theory accounts for adequate distribution of the transverse shear strains through the plate thickness and tangential stress-free boundary conditions on the plate boundary surface, thus a shear correction factor is not required. Plate governing equations and boundary conditions are derived by employing the principle of virtual work. The Navier-type exact solutions for static bending analysis are presented for sinusoidally and uniformly distributed loads. The accuracy of the present theory is ascertained by comparing it with various available results in the literature. The results show that the present model performs as good as the Reddy’s and Touratier’s shear deformation theories for analyzing the static behavior of isotropic and composite laminated and sandwich plates.  相似文献   

3.
Dynamic behavior of continuous systems such as beams and plates, under a moving load is an important engineering subject. In this paper, 3D elasticity equations are solved by use of the displacement potential functions and the exact solution of a simply supported thick rectangular plate under moving load is presented. For this purpose, the governing equations in terms of displacements, Navier’s equations, are converted to two linear partial differential equations of forth and second order using displacement potential functions. Then the governing equations in terms of the potential functions are solved using the separation of variables and Laplace integral transform, satisfying exact initial and boundary conditions. In order to validate the present approach, the obtained results of this study are compared with the results of the classical theory of plates for thin and existing solutions for moderately thick plates. Also, it is observed that the speed of a moving load has an important effect on the dynamic response of plate.  相似文献   

4.
An elastodynamic solution for the stress wave propagation in spherical curved plates composed of functionally graded materials (FGM) is presented. Properties of materials are assumed to vary in the direction of the thickness according to a known radial variation law (gradient field). The formulation is based on the linear three-dimensional elasticity. The Legendre orthogonal polynomial series expansion approach is used for determining the guided waves dispersion curves in functionally graded spherical curved plates. Our results from a homogeneous anisotropic spherical curved plate are compared with those published earlier to confirm the accuracy and range of applicability of this polynomial approach. Guided wave dispersion curves for graded spherical curved plates with different gradient fields are calculated, and the effects of the gradient field on the characteristics of guided waves are illustrated. Finally, dispersion curves for graded spherical curved plates at different ratios of inner radius to thickness are calculated to discover the influences of that ratio on the wave characteristics.  相似文献   

5.
Summary This study presents exact relationships between the deflections of isotropic sandwich plates and their corresponding Kirchhoff plates. The governing equilibrium equations for the sandwich plates are derived on the basis of the Reissner-Mindlin shear deformation plate theory. The considered plates are either (i) simply supported, of general polygonal shape and under any transverse loading condition or (ii) simply supported and clamped circular plates under axisymmetric loading. As the relationships are exact under the assumptions used in the plate theories, one may obtain exact deflection solutions of sandwich plates if the Kirchhoff plate solutions are exact. The relationships should also be useful for the development of approximate formulas for plates with other shapes, boundary and loading conditions, and may serve to check numerical deflection values computed from sandwich plate analysis software.  相似文献   

6.
In this paper, based on Lagrange–Germanian theory of elastic thin plates, applying the method in Hamiltonian state space, the elastic waves and vibrations when the boundary of the two lateral sides of the strip plate are free of traction are investigated, and the process of analysis and solution are proposed. The existence of all kinds of vibration modes and wave propagation modes is also analyzed. By using eigenfunction expansion method, the dispersion relations of waveguide modes in the strip plate are derived, and the comparisons with the dispersion relations directly obtained by the classical theory of thin plates are also presented. At last, the results are analyzed and discussed.  相似文献   

7.
An infinite system of two-dimensional equations of motion of isotropic elastic plates with edge and corner conditions are deduced from the three-dimensional equations of elasticity by expansion of displacements in a series of trigonometrical functions and a linear function of the thickness coordinate of the plate. The linear term in the expansion is to accommodate the in-plane displacements induced by the rotation of the plate normal in low-frequency flexural motions. A system of first-order equations of flexural motions and accompanying boundary conditions are extracted from the infinite system. It is shown that the present system of equations is equivalent to the Mindlin’s first-order equations, and the dispersion relation of straight-crested waves of the present theory is identical to that of the Mindlin’s without introducing any corrections. Reduction of present equations and boundary conditions to those of classical plate theories of flexural motions is also presented.  相似文献   

8.
Lamb波理论及层合板冲击损伤的实验研究   总被引:1,自引:1,他引:1  
周晚林  王鑫伟 《实验力学》2004,19(2):211-216
从理论上分析了板中Lamb波信号的传播特性,并给出Lamb波在板中传播的频散方程。理论分析及实验均表明,Lamb波的频散特性与复合材料结构损伤有着直接的联系,而且最低阶的对称和反对称Lamb波模态对层合板的损伤比较敏感,但应用Lamb波的频散效应监测结构的损伤在检测技术上还难以实现。根据板中导波形成Lamb波的共振原理,板中应力波的幅频特性很大程度上反映了Lamb波的谐振特征。因此,利用压电元件的压电阻抗谱分析应力波的各阶模态频率及振幅对结构损伤的变化,能够反映材料内部损伤与Lamb波的频散特性。文中针对表面粘贴压电元件的层合板智能结构,建立了包含Lamb波谐振模式的压电阻抗计算模型。冲击损伤试件的实验表明,由于结构损伤的出现压电阻抗谱中的模态频率及其阻抗幅值等特征信息将发生变化。因此,引入应力波损伤因子可以对结构冲击损伤的存在和程度进行初步评价。该方法基于结构的机-电动态阻抗特性,不受结构的几何形状限制,测试用的压电元件成本低,方法简单可行,有望在智能结构的健康诊断方面获得应用。  相似文献   

9.
Motions of a sandwich plate with symmetric facings are studied in the framework of the three-dimensional equations of elasticity. Both the core and facings are assumed to be isotropic and linearly elastic.Harmonic wave solutions, which satisfy traction-free face conditions and continuity conditions of tractions and displacements at the interfaces, are obtained for four cases: symmetric plane strain solutions for extensional motion, antisymmetric plane strain solutions for flexural motion, and solutions for the symmetric and antisymmetric SH-waves. The dispersion relation for each of these cases is obtained and computed. In order to exhibit the effect of the ratios of facing to core thicknesses, elastic stiffnesses and densities, on the dynamic behavior of sandwich plates, dispersion curves are computed and compared for plates with thick, light, and soft facings as well as for plates with thin, heavy, and stiff facings. Asymptotic expressions of dispersion relations for extensional, flexural, and symmetric SH-waves are obtained in explicit form, as the frequencies and wave numbers approach zero.The thickness vibrations in sandwich plates are studied in detail. The resonance frequencies and modal functions of the thickness-shear and thickness-stretch motions are obtained. Simple algebraic formulas for predicting the lowest thickness-shear and the lowest thickness-stretch frequencies are deduced. The orthogonality of the thickness modal functions is established.  相似文献   

10.
Appling Mindlin's theory of thick plates and Hamilton system to propagation of elastic waves under free boundary condition, a solution of the problem was given. Dispersion equations of propagation mode of strip plates were deduced from eigenfunction expansion method. It was compared with the dispersion relation that was gained through solution of thick plate theory proposed by Mindlin. Based on the two kinds of theories, the dispersion curves show great difference in the region of short waves, and the cutoff frequencies are higher in Hamiltonian systems. However, the dispersion curves are almost the same in the region of long waves.  相似文献   

11.
In recent years, a series of papers have appeared on algebraic relationships between the solutions (e.g., deflections, buckling loads and frequencies) of a given higher-order plate theory and the classical plate theory. The bending relationships, for example, can be used to generate the transverse deflection of a plate according to the particular higher-order theory from the known deflection of the same problem according to the classical plate theory. In the present study relationships between the bending solutions of several higher-order plate theories and the classical plate theory are obtained in a canonical form (i.e., one set of relationships contain several theories and they can be specialized to a specific theory by assigning values to the constants appearing in the relationships). Numerical examples of bending solutions for rectangular plates with various boundary conditions are presented to show how the relations can be used to determine the deflections and bending moments for various theories. The relationships are validated by comparing the numerical results obtained using the relationships for the Mindlin plate theory against those computed using the ABAQUS finite element program.  相似文献   

12.
In this paper, various efficient higher-order shear deformation theories are presented for bending and free vibration analyses of functionally graded plates. The displacement fields of the present theories are chosen based on cubic, sinusoidal, hyperbolic, and exponential variations in the in-plane displacements through the thickness of the plate. By dividing the transverse displacement into the bending and shear parts and making further assumptions, the number of unknowns and equations of motion of the present theories is reduced and hence makes them simple to use. Equations of motion are derived from Hamilton’s principle. Analytical solutions for deflections, stresses, and frequencies are obtained for simply supported rectangular plates. The accuracy of the present theories is verified by comparing the obtained results with the exact three-dimensional (3D) and quasi-3D solutions and those predicted by higher-order shear deformation theories. Numerical results show that all present theories can archive accuracy comparable to the existing higher-order shear deformation theories that contain more number of unknowns.  相似文献   

13.
A finite element method of analysis of the vibrational and wave propagational characteristics is presented for a laminated orthotropic plate under initial stress. The plate may have an arbitrary number of bonded elastic orthotropic layers, each with distinct thickness, density and mechanical properties, and the analysis is capable of treating a completely arbitrary three-dimensional state of initial stress. Biot's theory for incremental elastic deformations of a stressed solid forms the basis for this study. A homogeneous, isotropic plate under two different states of initial stress was analyzed and their numerical results showed excellent correlation with those from an exact solution. Further examples of a three layer composite plate and a sandwich plate are offered to add some general insight to the physical behavior of such plates.  相似文献   

14.
The propagation of non-linear elastic anti-plane shear waves in a unidirectional fibre-reinforced composite material is studied. A model of structural non-linearity is considered, for which the non-linear behaviour of the composite solid is caused by imperfect bonding at the “fibre–matrix” interface. A macroscopic wave equation accounting for the effects of non-linearity and dispersion is derived using the higher-order asymptotic homogenisation method. Explicit analytical solutions for stationary non-linear strain waves are obtained. This type of non-linearity has a crucial influence on the wave propagation mode: for soft non-linearity, localised shock (kink) waves are developed, while for hard non-linearity localised bell-shaped waves appear. Numerical results are presented and the areas of practical applicability of linear and non-linear, long- and short-wave approaches are discussed.  相似文献   

15.
We analyze the propagation of piezoelectromagnetic waves guided by a plate of polarized ceramics between two ceramic half-spaces. An exact dispersion relation is obtained, which reduces to a few known elastic, electromagnetic, and quasistatic piezoelectric wave solutions in the literature as special cases. Numerical solutions to the equation that determines the dispersion relation show the existence of guided waves. The results are useful for acoustic wave and microwave devices.  相似文献   

16.
The dispersion of small amplitude waves in a transversely isotropic, piezo-electric plate is discussed in respect of both short circuit and open circuit boundary conditions. In both cases the mechanical boundary conditions are taken as traction-free. In both cases, symmetric and anti-symmetric dispersion relations are derived, with long and short wave approximations then established, giving phase speed, and frequency, as functions of scaled wave number. It is shown that some particularly novel features occur within the vicinity of the associated cut-off frequencies. In particular, it is established that for some families the cut-off frequencies depend only on elastic terms, with others depending both on electrical and elastic terms. In each case, the appropriate asymptotic form of displacement is established. This reveals that for motion close to some frequencies, one of the scaled displacements is an order of magnitude larger than the electric potential, however for motion close to other frequencies the opposite situation arises. This information may have applications for the development and design of sensing and actuating devices. The paper also provides the necessary asymptotic framework for the derivation of asymptotically approximate models to fully elucidate the dynamic response of such plates near these resonance frequencies.  相似文献   

17.
This paper presents an efficient shear deformation theory for vibration of functionally graded plates. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded plate are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton??s principle. Analytical solutions of natural frequency are obtained for simply supported plates. The accuracy of the present solutions is verified by comparing the obtained results with those predicted by classical theory, first-order shear deformation theory, and higher-order shear deformation theory. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates.  相似文献   

18.
Based on the theory of laminated plates and applying the method in Hamiltonian state space, the propagation of flexural waves and vibrations in the strip plate covered with a layer are investigated. The boundaries at the two lateral sides are free of traction. According to the character of solar panel, the existence of all kinds of localized vibration modes and wave propagation modes is analyzed. By using eigenfunction expansion method, the dispersion relations of waveguide modes in the strip plate covered with a layer are derived. Through the numerical examples of solar panel, the existence of all kinds of vibration modes and propagating modes is analyzed. The dispersion curves of the strip plate covered with a layer under different parameters are presented and analyzed. The effects of the properties of the covering layer on the propagation of flexural waves are also examined.  相似文献   

19.
Shear horizontal (SH) waves in free and clamped monoclinic plates with an arbitrary inhomogeneity across the plate are considered. Firstly, some general properties of dispersion spectra of, specifically, the SH waves are pointed out. Secondly, analytical and numerical modeling of the SH dispersion branches is presented. Closed-form estimations are compared with exact curves computed for a free plate with continuously varying properties.  相似文献   

20.
In this article, the governing equations of motion of thick laminated transversely isotropic plates are derived based on Reddy’s third-order shear deformation theory. These equations are exactly converted to four uncoupled equations to study the in-plane and out-of-plane free vibrations of thick laminated plates without any usage of approximate methods. Based on the present analytical approach, exact Levy-type solutions are obtained for thick laminated transversely isotropic plates and, for some boundary conditions, the exact characteristic equations hitherto not reported in the literature are given. Also, the in-plane and out-of-plane deformed mode shapes are plotted for different boundary conditions. The present solutions can accurately predict both the in-plane and out-of-plane natural frequencies and mode shapes of thick laminated transversely isotropic plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号