首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Al18B4O33w/Co composite powders were prepared through electroless depositing Co on Al18B4O33 whiskers and the microstructure of the prepared composite powders was adjusted through heat-treatment. The included Co oxide is reduced and the density as well as the crystal perfection of the coatings is improved when annealed at 400 °C in H2 atmosphere. An increase of 105 S m−1 in conductivity together with an increase of 28% in Ms is obtained, resulting in a prominent increase of the permittivity and the permeability. The increase of permittivity, specifically the dielectric relaxation is attributed to the increase of conductivity. The increase of permeability is attributed to the increase of Ms and the microstructure evolution. The increase of electromagnetic parameters in 2-18 GHz band is believed to enhance the electromagnetic wave absorbing performance of the Al18B4O33w/Co composite powders.  相似文献   

2.
The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.  相似文献   

3.
The promotion of sulfur oxides on the selective catalytic reduction (SCR) of NO by hydrocarbons in the presence of a low concentration of sulfur oxides over Ag/Al2O3 has been investigated by a flow reaction test and in situ infrared spectroscopy. When the C3H6 (or C10H22) + NO + O2 feed-flow reaction was tested, maximum NO reduction was below 30% over fresh Ag/Al2O3. After the addition of SO2 to the feed flow, conversion increased slightly. Conversion increased further after SO2 was cut-off from the feed flow. This demonstrated that the increase in NO reduction activity of the catalyst was related to SOx adsorbed on the catalyst. SOx adsorbed on the catalytic surface (1375 cm−1) was detected by IR spectroscopy and was stable within the temperature range. NCO species, as an intermediate in NO reduction, on SOx-adsorbed Ag/Al2O3 in a C3H6 + NO + O2 feed flow was observed in in situ IR spectra during the elevation of the reaction temperature from 473 to 673 K, while it was only observed at 673 K on fresh Ag/Al2O3 under the same experimental conditions. We suggest that SOx in low concentrations depressed the combustion of reductants by contaminating hydrocarbon combustion active sites on the catalyst, resulting in an increase in NO reduction efficiency of the reductants.  相似文献   

4.
Europium (Eu3+) doped YBa3B9O18 were synthesized by conventional solid state solidification methods. (Y1−xEux)Ba3B9O18 formed solid solutions in the range of x=0–1.0. The luminescence property measurements upon excitation in ultraviolet–visible range show well-known Eu3+ excitation and emission. The charge transfer excitation band of Eu3+ dominates the excitation spectra. The emission spectrum of Eu3+ ions consists mainly of several groups of lines in the 550–720 nm region, due to the transitions from the 5D0 level to the levels 7FJ (J=0, 1, 2, 3, 4) of Eu3+ ions. The dependence of luminescence intensity on Eu3+ concentration shows no concentration quenching for fully concentrated EuBa3B9O18. Eu3+ doped YBa3B9O18 are promising phosphors for applications in displays and optical devices.  相似文献   

5.
We produced dielectric stacks composed of ALD SiO2 and ALD Al2O3, such as SiO2/Al2O3, Al2O3/SiO2, and SiO2/Al2O3/SiO2, and measured the leakage currents through the stacks in comparison with those of the single oxide layers. SiO2/Al2O3 shows lowest leakage current for negative bias region below 6.4 V, and Al2O3/SiO2 showed highest current under negative biases below 4.5 V. Two distinct electron conduction regimes are observed for Al2O3 and SiO2/Al2O3. Poole-Frenkel emission is dominant at the high-voltage regime for both dielectrics, whereas the direct tunneling through the dielectric is dominant at the low-voltage regime. The calculated transition voltage between two regimes for SiO2 (6.5 nm)/Al2O3 (12.6 nm) is −6.4 V, which agrees well with the experimental observation (−6.1 V). For the same EOT of entire dielectric stack, the transition voltage between two regimes decreases with thinner SiO2 layer.  相似文献   

6.
Al2O3:Si,Ti, prepared under oxidizing condition at high temperature, gives PL emission around 430 nm when excited with 240 nm. The Al2O3:C, TL/OSL phosphor, also shows emission around 430 nm, which corresponds to characteristic emission of F-center. Thus, to identify the exact nature of luminescent center in Al2O3:Si,Ti, fluorescence lifetime measurement studies were carried out along with the PL,TL and OSL studies. The PL and TL in Al2O3:Si,Ti show emission around 430 nm and the time-resolved fluorescence studies show lifetime of about 43 μs for the 430 nm emission, which is much smaller than the reported lifetime of ∼35 ms for the 430 nm emission (F-center emission) in Al2O3:C phosphor. Therefore, the emission observed in Al2O3:Si,Ti phosphor was assigned to Ti4+ charge transfer transition. Fluorescence studies of Al2O3:Si,Ti do not show any traces of F and F+ centers. Also, Ti4+ does not show any change in the charge state after gamma-irradiation. On the basis of the above studies, a mechanism for TSL/OSL process in Al2O3:Si,Ti is proposed.  相似文献   

7.
Enhanced photoluminescence (PL) mechanism of Er3+-doped Al2O3 powders by Y3+ codoping at wavelength 1.53 μm has been investigated through PL measurements of 0.1 mol% Er3+- and 0-20 mol% Y3+-codoped Al2O3 powders prepared at a sintering temperature of 900 °C in a non-aqueous sol-gel method. PL intensity and lifetime of Er3+-Y3+-codoped Al2O3 powders composed of γ-(Al,Er,Y)2O3 and θ-(Al,Er,Y)2O3 phases increased with increasing Y3+-codoping concentration. The 10-20 mol% Y3+ codoping in 0.1 mol% Er3+-doped Al2O3 powders intensified the PL intensity by about 20 times, with a PL lifetime prolonged from 3.5 to 5.8 ms. A maximal increase of the optical activity of Er3+ in 0.1 mol% Er3+-Y3+-codoped Al2O3 powders about one order was achieved by 10-20 mol% Y3+ codoping. It is found that the improved PL properties for Er3+-Y3+-codoped Al2O3 powders are mainly attributed to enhanced optical activation of Er3+ in the Al2O3 by Y3+ codoping, and to the slightly increased radiative quantum efficiency of Er3+ in the Al2O3.  相似文献   

8.
The Ca2.95−yDy0.05B2O6:yNa+ (0≤y≤0.20) phosphors were synthesized at 1100 °C in air by the solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE), photoluminescence (PL) spectra and thermoluminescence (TL) spectra. The PLE spectra show the excitation peaks from 300 to 400 nm due to the 4f-4f transitions of Dy3+. This mercury-free excitation is useful for solid-state lighting and light-emitting diodes (LEDs). The emission of Dy3+ ions on 350 nm excitation was observed at 480 nm (blue) due to the 4F9/26H15/2 transitions, 575 nm (yellow) due to 4F9/26H13/2 transitions and 660 nm (red) due to weak 4F9/26H11/2 emissions. The PL results from the investigated Ca2.95−yDy0.05B2O6:yNa+ phosphors show that Dy3+ emissions increase with the increase of the Na+ codoping ions. The integral intensity of yellow to blue (Y/B) can be tuned by controlling Na+ content. By the simulation of white light, the optimal CIE value (0.328, 0.334) can be achieved when the content of Na+-codoping ions is y=0.2. The results imply that the Ca2.95−yDy0.05B2O6:yNa+ phosphors could be potentially used as white LEDs.  相似文献   

9.
Pure Li6CaB3O8.5 and Li6Ca1−xPbxB3O8.5 (0.005≤x≤0.04) materials were prepared by a solution combustion synthesis method. The phase of synthesized materials was determined using the powder XRD and FTIR. The synthesized materials were investigated using spectrofluorometer at room temperature. The emission and excitation bands of the synthesized phosphors were observed at 307 and 268 nm, respectively. The dependence of the emission intensity on the Pb2+ concentration for the Li6Ca1−xPbxB3O8.5 (0.005≤x≤0.04) was studied and observed that the optimum concentration of Pb2+ in phosphor is 0.01 mol. The Stokes shift of the synthesized phosphor was calculated to be 4740 cm-1.  相似文献   

10.
C. Li 《Applied Surface Science》2010,256(22):6801-6804
Fe2O3/Al2O3 catalysts were prepared by solid state reaction method using α-Fe2O3 and γ-Al2O3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al2O3 grain and between the grains, respectively. With increasing Fe2O3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe2O3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.  相似文献   

11.
Structural, electronic properties and relative stability of quasi-two-dimensional (2D) free-standing planar nano-block (NBs) structures Tin+1Al0.5Cn and Tin+1Cn (n = 1 and 2), which can be prepared using the recently developed procedure of exfoliation of corresponding NBs from MAX phases, were examined within first principles calculations in comparison with parent MAX phases Ti3AlC2 and Ti2AlC. We found that in general Tin+1Cn and Tin+1Al0.5Cn NBs retain the atomic geometries of the corresponding blocks of the MAX phases, but some structural distortions for the NBs occur owing to the lowering of the coordination number for atoms in the external Ti sheets of the nano-block structures. Our analysis based on their cohesive and formation energies reveals that the stability of the nano-block structures increases with index n (or, in other words, with a growth of the number of Ti–C bonds), the Al-containing NBs becoming more stable than the “pure” Ti–C NBs. Our data show that the magnetization of the simulated planar nano-block structures can be expected; so, for the Ti3C2 nano-block the most stable will be the spin configuration, where within each external Ti sheet the spins are coupled ferromagnetically together with antiferromagnetic ordering between opposite external titanium sheets of this nano-block.  相似文献   

12.
New blue-green emitting Sr4Al14O25:Ce3+ phosphor is reported in this paper. The polycrystalline samples of phosphor were prepared by the conventional solution combustion method and checked for crystallization and phase by X-ray diffraction. Photoluminescence studies reveal the emission at 472 and 511 nm that correspond to the transition between lowest T2g level of the 5d state to the 2F5/2 and 2F7/2 ground state levels of the Ce3+. The excitation at 275 nm corresponds to O2−→Ce4+ charge transfer processes to lowest 5d state of Ce ion (T2g). Phosphorescence decay procedures reveal the existence of slow, medium, and fast component involved in the process. Varying the γ-dose (1-6 Gy), thermoluminescence (TL) measurements were made and glow curve maximum is obtained at 383 K. The phosphor seems to follow a first-order kinetics due to non-shifting Tm property. The Tm-Tstop method followed by the repeated initial rise method is applied to determine the distribution of activation energies and corresponding maximum positions. Chi-square minimization procedures provide the appropriate peak positions and other trapping parameters. From deconvolution results, the activation energies are found to be 0.84 and 1.06 eV, while the frequency factor is of the order of 1010 and 1011 s−1, respectively.  相似文献   

13.
BixY3−xFe5O12 thin films have been grown on GGG (Gd3Ga5O12) (1 1 1) substrates by the combinatorial composition-spread techniques under substrate temperature (Tsub) ranging from 410 to 700 °C and O2 pressure of 200 mTorr. In order to study the effect of substrates on the deposition of BixY3−xFe5O12 thin films, garnet substrates annealed at 1300 °C for 3 h were also used. Magneto-optical properties were characterized by our home-designed magneto-optical imaging system. From the maps of Faraday rotation angle θF, it was evident that the Faraday effect appears only when Tsub = 430-630 °C. θF reaches to the maximum value (∼6°/μm, λ = 632 nm) at 500 °C, and is proportional to the Bi contents. XRD and EPMA analyses showed that Bi ions are easier to substitute for Y sites and better crystallinity is obtained for annealed substrates than for commercial ones.  相似文献   

14.
Lithium borate (Li2B4O7) is a low Zeff, tissue equivalent material that is commonly used for medical dosimetry using the thermoluminescence (TL) technique. Nanocrystals of lithium borate were synthesized by the combustion method for the first time in the laboratory. TL characteristics of the synthesized material were studied and compared with those of commercially available microcrystalline Li2B4O7. The optimum pre-irradiation annealing condition was found to be 300 °C for 10 min and that of post-irradiation annealing was 300 °C for 30 min. The synthesized Li2B4O7 nanophosphor has very poor sensitivity for low doses of gamma up to 101 Gy whereas from 101 to 4.5×102 Gy this phosphor exhibits a linear response and then from 4.5×102 to 103 Gy it shows supralinearity. Thermoluminescence properties of Li2B4O7 nanophosphor doped with Cu has also been investigated in this paper. It shows low fading and a linear response over a wide range of gamma radiation from 1×102 to 5×103 Gy. Therefore the synthesized lithium borate nanophosphor doped with Cu may be used for high dose measurements of gamma radiations.  相似文献   

15.
In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 and ferrimagnetic oxide/ferromagnetic metal CoFe2O4/CoFe2 nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe2O4/CoFe2 nanocomposite: (i) first, preparation of CoFe2O4 nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe2O4 nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe2O4 particles is about 16 nm. Mossbauer spectra revealed two sites for Fe3+. One site is related to Fe in an octahedral coordination and the other one to the Fe3+ in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe2O4. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe2 on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH)max of 1.22 MGOe was achieved at room temperature for CoFe2O4/CoFe2 nanocomposites, which is about 115% higher than the value obtained for CoFe2O4 precursor. The exchange coupling interaction and the enhancement of product (BH)max in nanocomposite CoFe2O4/CoFe2 are discussed.  相似文献   

16.
Thermal stability, oxygen non-stoichiometry and electrical conductivity of LaNi0.6Fe0.4O3δ were investigated in the temperature region of 20-1000 °C in Ar/O2 gas flows at oxygen partial pressures between 0.5 and 21,000 Pa. Diffusion mobility was measured in Ar/O2 gas flow at pO2 = 18 Pa. Crystal structure of this compound was found to be stable at the mentioned experimental conditions. LaNi0.6Fe0.4O3δ is a p-type semiconductor with metallic type conductivity above 150 °C at the investigated pO2 range. Two different (fast and slow) oxygen exchange areas on the temperature-pO2 diagram were established, which are due to two different oxygen anion positions in the double B-site mixed perovskite structure. Oxygen non-stoichiometry in the fast oxygen exchange region reaches about 0.005 of oxygen atomic index. Chemical diffusion and oxygen surface exchange coefficients do not vary at 600-800 °C, but show visible increase above 800-850 °C.  相似文献   

17.
We report the synthesis of three new Yb-based compounds, Yb8Ag18.5Al47.5 (Yb8Cu17Al49-type, tetragonal tI74–I4/mmm), Yb2Pd2Cd (Mo2B2Fe-type, tetragonal tP10-P4/mbm) and Yb1.35Pd2Cd0.65 (MnCu2Al-type, cubic cF16–Fm3¯m). The crystal symmetry of these compounds has been determined and the complete structural characterisation carried out by single crystal and powder diffraction techniques. Two symmetry in-equivalent sites are available for the Yb ions in Yb8Ag18.5Al47.5 and Yb1.35Pd2Cd0.65. The 4f levels of the Yb ions are appreciably hybridised in Yb8Ag18.5Al47.5 and to a lesser extent in Yb2Pd2Cd as inferred from the magnetisation and heat capacity data. Signatures of heavy fermion behaviour are observed in the heat capacity data of Yb2Pd2Cd in which the heat capacity, C/T, increases at low temperatures attaining a value of ≈600 mJ/mol K2 at 1.8 K. The electrical resistivity of Yb2Pd2Cd follows a linear variation with temperature, T, between 1.4 and 5 K, thus indicating a possible non-Fermi liquid behaviour. In contrast, Yb ions are trivalent in Yb1.35Pd2Cd0.65 and order magnetically near 1.4 K.  相似文献   

18.
The microwave spectra of the gauche conformer of perfluoro-n-butane, n-C4F10, of perfluoro-iso-butane, (CF3)3CF, and of tris(trifluoromethyl)methane, (CF3)3CH, have been observed and assigned. The rotational and centrifugal distortion constants for gauche n-C4F10 are: A = 1058.11750(7) MHz, B = 617.6832(1) MHz, C = 552.18794(1) MHz, ΔJ = 0.0257(5) kHz, δJ = 0.0052(3) kHz. A C-C-C-C dihedral angle, ω, of ∼55° has been determined. These values agree well with those obtained from a coupled cluster (CCSD/cc-PVTZ) calculation. The rotational and centrifugal distortion constants for iso-C4F10 and iso-C4HF9 are: Bo = 816.4519(4) MHz, DJ = 0.023(2) kHz, and Bo = 903.6985(25) MHz, DJ = 0.043(4) kHz, respectively. The dipole moment of iso-C4F10 and iso-C4HF9 have been measured and found to be 0.0338(8) and 1.69(9) D, respectively.  相似文献   

19.
Single crystal α-Al2O3 wafers were implanted with 45 keV Zn ions up to a fluence of 1×1017 ions/cm2, and were then subjected to furnace annealing in oxygen atmosphere at different temperatures. Various techniques have been applied to study the creation of nanoparticles (NPs), defects and their thermal evolutions, as well as their effects on optical properties of Al2O3. Our results clearly show that Zn NPs have been synthesized in the as-implanted sample and they begin to be oxidized at 500 °C. Two broad photoluminescence bands appear in the Zn ion-implanted samples and their intensities depend on the annealing temperatures. The results have been interpreted in view of creation of the defects and NPs, Zn atoms diffusion as well as their thermal evolution during annealing.  相似文献   

20.
Sn1−xMnxO2 (x=0.01-0.05) thin films were synthesized on quartz substrate using an inexpensive ultrasonic spray pyrolysis technique. The influence of doping concentration and substrate temperature on structural and magnetic properties of Sn1−xMnxO2 thin films was systematically investigated. X-ray diffraction (XRD) studies of these films reflect that the Mn3+ ions have substituted Sn4+ ions without changing the tetragonal rutile structure of pure SnO2. A linear increase in c-axis lattice constant has been observed with corresponding increase in Mn concentration. No impurity phase was detected in XRD patterns even after doping 5 at% of Mn. A systematic change in magnetic behavior from ferromagnetic to paramagnetic was observed with increase in substrate temperature from 500 to 700 °C for Sn1−xMnxO2 (x=0.01) films. Magnetic studies reveal room-temperature ferromagnetism (RTFM) with 3.61×10−4 emu saturation magnetization and 92 Oe coercivity in case of Sn1−xMnxO2 (x=0.01) films deposited at 500 °C. However, paramagnetic behavior was observed for the films deposited at a higher substrate temperature of 700 °C. The presence of room-temperature ferromagnetism in these films was observed to have an intrinsic origin and could be obtained by controlling the substrate temperature and Mn doping concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号