首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The structural and optoelectronic properties of LixAxNbO3 (A=Na, K, Rb, Cs, Fr and x=0, 0.5) compounds have been investigated by the generalized gradient approximation within density functional theory. The calculated fundamental direct band gap of pure LiNbO3 is 3.32 eV. It is found that the substitution of alkali elements drastically change the optoelectronic nature of the compound from direct to indirect bandgap semiconductor and the fundamental gap also decreases. The nature of the compound is ionic with strong bonds between alkali ions and O, while there are partial covalent bonds between Nb and O. The calculated static refractive index of pure LiNbO3 is 2.43 for the perpendicular plane to the c-axis, while 2.37 for the parallel plane to the c-axis. So these values are intensively dependent on the substitution of alkali metals. The calculated electron energy loss spectra are in good agreement with the experimental results. It also predicts some extra interesting peaks, which have not been observed in experiments.  相似文献   

2.
At the generalized gradient approximation (GGA), the elastic constants of the orthorhombic phase of NH3BH3 were calculated with plane-wave pseudo-potential method. Our calculation showed that the orthorhombic phase NH3BH3 is a loose and brittle material, as well as hard to be deformed, also we calculated the elastic anisotropies and the Debye temperatures from the elastic constants. And from the band structure and density of state (DOS), we concluded that NH3BH3 is a wide-gap semiconductor and the band gap is almost 6.0 eV. The bonds between N atoms and H atoms show a strong covalent characteristic, B atoms and H atoms form ironic bonds, and so as to the B-N bonds. Electrons from the B atoms are absorbed by the H atoms around the B atoms, and the H atoms display electronegativity.  相似文献   

3.
The interaction of metals with hydrogen is of importance in several areas of technology. Lithium-hydrogen complexes are particularly amenable to theoretical study. Although no stable compound of the Li atom and H2 has been found, a weak dative interaction forms between the σ bond of H2 and the positively charged Li atom for Li+, Li-H+, and Li-H. At least four H2 molecules can be complexed by Li+, and three by Li-H+ and Li-H. The presence of the Li ion does not substantially weaken the H2 bond, nor is the energy of dissociation affected; however, the Li ion does form stable complexes with the dissociated H atoms.  相似文献   

4.
The structural properties and relaxation mechanisms of Li2KH(SO4)2 crystals were determined using the temperature dependences of NMR spectra and the spin-lattice relaxation times (T1) of their 1H, 7Li, and 39K nuclei. The results obtained were compared with the previously reported physical properties of LiKSO4 crystals. The substitution of the potassium ions with protons in the LiKSO4 crystals were variations in the phase transition temperatures, and the non-appearance of ferroelastic properties. The 7Li T1 for the Li2KH(SO4)2 crystals was much shorter than the 7Li T1 for the LiKSO4 crystals, and these findings indicate that the presence of the protons in Li2KH(SO4)2 causes the Li ions to move with greater freedom.  相似文献   

5.
Chemical Li ion extraction processes have been carried out for pristine LiCoO2, LiCo0.95Ga0.05O2, and LiCo0.9Ga0.1O2 compounds by swirling them in 0.35 M H2SO4 solution. It is confirmed from XRD patterns that the compounds maintain the two-dimensional framework with pristine-type structure even after the acid treatment up to 12 h. The Ga-substituted compounds keep Li ions for longer time on the acid treatment rather than the LiCoO2. The average oxidation state of Co ions increases with the Li+ ion extraction time up to 3.45+. The local structure refinements for the chemically Li+ ion extracted compounds have been investigated by Co K-edge X-ray absorption spectroscopy. The extraction causes the increase of Debye-Waller (DW) factor or static disorder around the Co ion. The DW factor of the Co-Co bond pair less increases with the extraction time for the LiyCo0.95Ga0.05O2, and LiyCo0.9Ga0.1O2 compounds than that for the LiCoO2. The Ga-substituted compounds are more stable against acid treatments than the LiCoO2, since more basic Ga3+ ion retards the structural distortion of the CoO6 octahedra against the Li ion extraction.  相似文献   

6.
张国莲  逯瑶  蒋雷  王喆  张昌文  王培吉 《物理学报》2012,61(11):117101-117101
基于第一原理的密度泛函理论, 以量子化学从头计算软件 为平台研究了Sn(O1-xNx)2材料的光电磁性能, 分析了体系的态密度、 能带结构、 磁性、 介电虚部及折射率. 计算结果表明, N替代O后, 随着掺杂浓度的增加, 体系的带隙先减小后增大, 掺杂量为12.50%时带隙最窄. 由于N 2p轨道电子的贡献, 在0.55-1.05 eV范围内产生了浅受主能级, 价带和导带处的能级均出现了劈裂及轨道的重叠现象, Sn-O键的键强大于N-O键的键强. 从磁性来看, N原子决定了磁矩的大小. 从介电虚部可知, 掺杂后体系的光学吸收边增宽, 主跃迁峰发生红移, 反射率和介电谱相对应, 各峰值与电子的跃迁吸收有关.  相似文献   

7.
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对(Li3N)n(n=1—5)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构. 并对最稳定结构的振动特性、成键特性、电荷特性等进行了理论研究. 结果表明,(Li3N)n(n=1—5)团簇中N原子的配位数以4,5较多见,Li—Li键长为0.210—0.259nm,Li原子在桥位时Li—N键长为0.185—0.204nm,Li原子在端位时Li—N键长为0.172—0.178nm;团簇中N原子的平均自然电荷为-2.01e,Li原子的平均自然电荷为+0.67e;Li3N,(Li3N)5团簇有相对较高的动力学稳定性. 关键词: 3N)n(n=1—5)团簇')" href="#">(Li3N)n(n=1—5)团簇 密度泛函理论 结构与性质 储氢材料  相似文献   

8.
陈玉红  杜瑞  张致龙  王伟超  张材荣  康龙  罗永春 《物理学报》2011,60(8):86801-086801
采用第一性原理方法研究了H2分子在Li3N(110)晶面的表面吸附. 通过研究H2/Li3N(110)体系的吸附位置、吸附能和电子结构发现: H2分子吸附在N桥位要比吸附在其他位置稳定,此时在Li3N(110)面形成两个-NH基,其吸附能为1.909 eV,属于强化学吸附;H2与Li3N(110)面的相互作用主要是H 1s轨道与N 关键词: 第一性原理 3N(110)')" href="#">Li3N(110) 2')" href="#">H2 吸附和解离  相似文献   

9.
张致龙  陈玉红  任宝兴  张材荣  杜瑞  王伟超 《物理学报》2011,60(12):123601-123601
利用密度泛函理论在B3LYP/6-311G*水平上对叠氮化合物(HMgN3)n(n=1–5)团簇各种可能构型进行了几何优化,预测了各团簇的最稳定结构. 并对最稳定结构的成键特性、电荷分布、振动特性及稳定性进行理论研究. 结果表明:HMgN3团簇最稳定结构为直线型;(HMgN3)n(n=2,5)团簇最稳定结构为叠氮基中N原子和金属原子相连构成Mg–N–Mg结构;(HMgN3)n(n=3,4)团簇最稳定结构为叠氮基与Mg原子相互链接形成的环状结构. 团簇最稳定结构中金属Mg原子均显示正电性,H原子均显示负电性,叠氮基中间的N原子显示正电性、两端的N原子显示负电性,且与Mg原子直接作用的N原子负电性更强. Mg–N键和Mg–H键为典型的离子键,叠氮基内N原子之间是共价键. 团簇最稳定结构的红外光谱分为三部分,其最强振动峰均位于2258–2347 cm-1,振动模式为叠氮基中N–N键的反对称伸缩振动. 叠氮基在团簇和晶体中结构不变,始终以直线型存在. 稳定性分析显示,(HMgN3)3团簇相对于其他团簇更为稳定. 关键词: 3)n(n=1–5)团簇')" href="#">(HMgN3)n(n=1–5)团簇 叠氮基 密度泛函理论 结构与性质  相似文献   

10.
The structural, electronic and thermodynamic properties of cubic Zn3N2 under hydrostatic pressure up to 80 GPa are investigated using the local density approximation method with pseudopotentials of the ab initio norm-conserving full separable Troullier-Martin scheme in the frame of density functional theory. The structural parameters obtained at ambient pressure are in agreement with experimental data and other theoretical results. The change of bond lengths of two different types of Zn-N bond with pressure suggests that the tetrahedral Zn-N bond is slightly less compressible than the octahedral bond. By fitting the calculated band gap, the first and second order pressure coefficients for the direct band gap ofthe Zn3N2 were determined to be 1.18×10−2 eV/GPa and −2.4×10−4 eV/(GPa)2, respectively. Based on the Mulliken population analysis, Zn3N2 was found to have a higher covalent character with increasing pressure. As temperature increases, heat capacity, enthalpy, product of temperature and entropy increase, whereas the Debye temperature and free energy decrease. The present study leads to a better understanding of how Zn3N2 materials respond to compression.  相似文献   

11.
Optoelectronics research requires cheap materials with a broad spectrum of optical, electronic, and structural properties. The class of Heusler compounds and ternary structures provide many possibilities for finding alternative group IV and III–V semiconductor compounds. This study introduces wider band gap materials for use in solar cells as an alternative to cadmium sulfide buffer layers. The buffer layer is inserted between the absorber layer (p-type) and the transparent window layer (n-type) to enhance the maximum amount of light transmission. Reasonable calculations are reported for the band gaps of copper-containing materials: LiCuS, BaCu2S2, and Li2CuSb. Previous optical analysis measurements of these films determined that the band gaps were 1.8 and 1.9 eV for BaCu2S2 and LiCuS, respectively. In general, semiconductor compounds have been studied theoretically, but there are major differences between the experimental and theoretically calculated band gaps. A suitable calculation method for semiconductor compounds is described in this study. For the first time, calculations based on the Engel and Vosko method are introduced for these semiconductor compounds. This method yields band gaps that are comparable to the experimental values, which facilitate the development of microscopic analyses of these compounds. Direct band gaps of 1.15 and 1.7 eV were obtained for BaCu2S2 and LiCuS, respectively, whereas the indirect band gap was 0.7 eV for Li2CuSb.  相似文献   

12.
The structural, elastic, electronic and optical (x=0) properties of doped Sn1−xBixO2 and Sn1−xTaxO2 (0≤x≤0.75) are studied using the first-principles pseudopotential plane-wave method within the local density approximation. The independent elastic constants Cij and other elastic parameters of these compounds have been calculated for the first time. The mechanical stability of the compounds with different doping concentrations has also been studied. The electronic band structure and density of states are calculated and the effect of doping on these properties is also analyzed. It is seen that the band gap of the undoped compound narrowed with dopant concentration, which disappeared for x=0.26 for Bi doping and 0.36 for Ta doping. The materials thus become conductive oxides through the change in the electronic properties of the compound for x≤0.75, which may be useful for potential application. The calculated optical properties, e.g. dielectric function, refractive index, absorption spectrum, loss-function, reflectivity and conductivity of the undoped SnO2 in two polarization directions are compared with both previous calculations and measurements.  相似文献   

13.
Density functional theory has been employed to optimize the structure of endohedral doped C20 fullerene. We have also investigated electronic properties. We have found that C20 cage can accommodate up to 8 hydrogen atoms. Some hydrogen atoms get chemisorbed on the inner surface of C20 cage and form C-H bond. Structural deformation is found to increase with increase in H-atoms. From the analysis of electronic properties, we observe that due to endohedral doping of hydrogen atoms inside C20, H-atoms acquire net negative charge by accepting electrons and fullerene molecules acquire positive charge by donating electrons to H-atoms. For endohedral complexes where H3 triangular molecule formation takes place, the nature of net charge transfer changes, i.e. fractional electronic charge is transferred from H-atoms to fullerene. C20 doped with odd number of H-atoms should be more reactive compared to the even number case. Most of the present results are similar to those of endohedral C60.  相似文献   

14.
The exchange interactions (JBB and JAB are the intra and the inter-sublattice exchange interactions between neighbouring spins, respectively) are obtained by using the general expressions of canting angle and critical temperature obtained by mean field theory of Li0.5Fe2.5−2xAlxCrxO4. The expression of magnetic energy of Li0.5Fe2.5−2xAlxCrxO4 is obtained for different spin configurations and dilution x. The saturation magnetisation of Li0.5Fe2.5-2xAlxCrxO4 is obtained with different values of dilution x. The magnetic phase diagram of Li0.5Fe2.5-2xAlxCrxO4 materials is obtained by high temperature series expansions (HTSEs). The critical exponent associated with the magnetic susceptibility of Li0.5Fe2.5−2xAlxCrxO4 is deduced.  相似文献   

15.
Li2O-ZrO2-SiO2: Ho3+ glasses mixed with three interesting d-block elemental oxides, viz., Nb2O5, Ta2O5 and La2O3, were prepared. Optical absorption and photoluminescence spectra of these glasses have been recorded at room temperature. The luminescence spectra of Nb2O5 and Ta2O5 mixed Li2O-ZrO2-SiO2 glasses (free of Ho3+ ions) have also exhibited broad emission band in the blue region. This band is attributed to radiative recombination of self-trapped excitons (STEs) localized on substitutionally positioned octahedral Ta5+ and Nb5+ ions in the glass network. The Judd-Ofelt theory was successfully applied to characterize Ho3+ spectra of all the three glasses. From this theory various radiative properties, like transition probability A, branching ratio βr and the radiative lifetime τr, for 5S2 emission levels in the spectra of these glasses have been evaluated. The radiative lifetime for 5S2 level of Ho3+ ions has also been measured and quantum efficiencies were estimated. Among the three glasses studied the La2O3 mixed glass exhibited the highest quantum efficiency. The reasons for such higher value have been discussed based on the relationship between the structural modifications taking place around the Ho3+ ions.  相似文献   

16.
We determine the structural, electronic, elastic and optical properties of fluoro-perovskite KZnF3 using the full potential linear augmented plane wave approach (FP-LAPW) based on the density functional theory (DFT). The exchange-correlation potential is treated by the local density approximation (LDA) and the generalized gradient approximation (GGA). The calculated structural parameters are in good agreement with the available data. We have obtained an indirect band gap. The effect of the pressure on the band gaps is investigated. We evaluate the elastic constants (Cij), elastic moduli and the Debye temperature. The imaginary and the real parts of the dielectric function ε(ω) and some optical constants are also calculated.  相似文献   

17.
邓杨  王如志  徐利春  房慧  严辉 《物理学报》2011,60(11):117309-117309
采用基于密度泛函理论(DFT)的第一性原理计算研究了 (Ba0.5Sr0.5)TiO3 (BST) 晶体在高压下的电子结构及能带变化行为. 研究结果发现,随着压强的增加,BST能带间隙先增加,在压强为55 GPa时达到最大值,然后减小,这些有趣的结果将有助于开发与设计新的BST铁电器件. 进一步地,通过电子态密度和密度分布图的研究分析可知:在低压区域(055 GPa),则是出现的离域现象占主导(电子的离域作用超过键态的作用),从而使带隙减小. 关键词: 钛酸锶钡 第一性原理 高压 能带间隙  相似文献   

18.
Singlet O2 produced upon photoexcitation is a very important oxidative reagent. The study on its reaction with nanotube might be useful not only to evaluate the stability of the nanotube upon air exposure and sunlight, but also to modify the properties of the nanotube. Considering the unique properties and wide applications of silicon carbide nanotube (SiCNT), in this paper, we performed extensive density functional theory (DFT) calculations to study the oxidation of a series of zigzag (n,0) SiCNTs (n=6 to 12) by singlet O2. It is found that the reaction process contains two steps, namely, (i) [2+2] cycloaddition of a singlet O2 to the Si–C bond, followed by (ii) the dissociation of the O–O bond, leading to the formation of an epoxide configuration with a highly exothermicity (>4.00 eV). Compared with pure SiCNT, the cycloaddition of singlet O2 on tube leads to the decrease of the band gap, while the formation of the stable epoxy structure render band gap increase. Our results indicate that the SiCNT is more prone to be degraded after exposure to air and sunlight.  相似文献   

19.
An accurate ab initio full potential linear muffin-tin orbital method has been used to investigate the structural, electronic and optical properties of BP, BAs and their (BP)n/(BAs)n superlattices (SLs). The exchange-correlation potential is treated with the local density approximation of Perdew and Wang (LDA-PW). The calculated structural properties of BP and BAs compounds are in good agreement with available experimental and theoretical data. It is found that BP, BAs and their alloys exhibit an indirect fundamental band gap. The fundamental band gap decreases with increasing the number of monolayer n. The optical properties show that the static dielectric constant significantly decreases in superlattices compared to their binary compounds.  相似文献   

20.
We propose a new layered-ternary Ta4SiC3 with two different stacking sequences (α- and β-phases) of the metal atoms along c axis and study their structural stability. The mechanical, electronic and optical properties are then calculated and compared with those of other compounds M4AX3 (M=V, Nb, Ta; A=Al, Si and X=C). The predicted compound in the α-phase is found to possess higher bulk modulus than these compounds. The independent elastic constants of the two phases are also evaluated and the results discussed. The electronic band structures for α- and β-Ta4SiC3 show metallic conductivity. Ta 5d electrons are mainly contributing to the total density of states (DOS). We see that the hybridization peak of Ta 5d and C 2p lies lower in energy and the Ta 5d-C 2p bond is stronger than Ta 5d-Si 3p bond. Further an analysis of the different optical properties shows the compound to possess improved behavior compared to similar types of compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号