首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
讨论了载体位置、姿态均不受控情况下,具有有界干扰及有界未知参数的漂浮基柔性两杆空间机械臂的具有鲁棒性的关节运动控制与柔性振动最优控制算法设计问题。首先选择合理的联体坐标系,利用拉格朗日方程并结合动量守恒原理得到漂浮基柔性两杆空间机械臂系统的动力学方程。通过合理选择联体坐标系与利用奇异摄动理论,实现了两个柔性杆柔性振动之间、关节运动与两柔性杆柔性振动的解耦,得到了柔性两杆空间机械臂的慢变子系统与柔性臂快变子系统。针对两个子系统设计相应的控制规律,即增广鲁棒慢变子系统控制律与柔性臂快变子系统最优控制律,这两个相应的子系统控制规律综合到一起构成飘浮基柔性两杆空间机械臂总的关节运动与臂柔性振动控制的组合控制律。系统的数值仿真证实了方法的有效性。该控制方案不需要直接测量漂浮基的位置、移动速度和移动加速度。  相似文献   

2.
谢立敏  陈力 《力学学报》2012,44(6):1057-1065
讨论了漂浮基柔性空间机器人系统的动力学建模、运动控制算法设计以及关节、臂双重柔性振动的分级主动抑制问题. 利用系统动量、动量矩守恒关系和拉格朗日-假设模态法对系统进行动力学分析,建立系统动力学方程. 基于奇异摄动法,将系统分解为表示系统刚性运动部分的慢变子系统, 表示由柔性臂引起的系统柔性运动部分的快变子系统1和表示由柔性关节引起的系统柔性运动部分的快变子系统2. 针对慢变子系统提出一种鲁棒控制方法来补偿系统参数的不确定性和柔性关节引起的转动误差,实现系统期望运动轨迹的渐近跟踪;针对快变子系统1采用线性二次型最优控制器来抑制由柔性臂引起的系统柔性振动;针对快变子系统2设计了基于机械臂和电机转子的转角速度差值的反馈控制器来抑制由柔性关节引起的系统柔性振动. 因此,系统的总控制律为以上3个子系统控制律的综合. 最后通过仿真实验证明了所提出的混合控制方法的有效性.   相似文献   

3.
Abstract

In this article, the nonlinear dynamic analysis of a flexible-link manipulator is presented. Especially, the possibility of chaos occurrence in the system dynamic model is investigated. Upon the occurrence of chaos, the system dynamical behavior becomes unpredictable which in turn brings about uncertainty and irregularity in the system motion. The importance of this investigation is pronounced in similar systems such as double pendulum and single-link flexible manipulator. What makes this study distinct from previous ones is the increase in the number of links as well as the changing the bifurcation parameters from system mechanical parameters to force and torque inputs. To this aim, the motion equations of the N-link robot, which are derived with the aid of the recursive Gibbs-Appell formulation and the assumed modes method, are used. In the end, the equations of motion are developed for a two-link flexible manipulator, and its nonlinear dynamical behavior is analyzed via numerical integration of discrete equations. The results are presented in the form of bifurcation diagrams (for variation of torque amplitude), time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms. The outcomes indicate that when there is no offset, the decrease in damping results in chaotic generalized modal coordinates. In addition, as the excitation frequency decreases from 2π to π, a limiting amplitude is created at 0.35 before which the behavior of generalized rigid and modal coordinates is different, while this behavior has more similarity after this point. An experimental setup is also used to check the torques as the system input.  相似文献   

4.
A methodology for investigating stationary and travelling waves with spatially localized envelopes is presented. The nonlinear governing partial differential equations considered possess a constant first integral of motion, and are separable in space and time when the small parameter of the problem is set to zero. To study stationary waves, a coordinate transformation on the governing nonlinear partial differential equation is imposed which eliminates the time dependence from the problem. An amplitude modulation function is then introduced to express the response of the system at an arbitrary point as a nonlinear function of a reference response. Analytic approximations to the amplitude modulation function are developed by expressing it in power series, and asymptotically solving sets of singular functional equations at the various orders of approximation. Travelling solutions may be computed from stationary ones, by imposing appropriate Lorentz transformations. As an application of the methodology, stationary and travelling breathers of a nonlinear partial differential equation are analytically computed.  相似文献   

5.
The general nonlinear intrinsic equations of motion of an elastic composite beam are solved in order to obtain the elasto-dynamic response of a rotating articulated blade. The solution utilizes the linear Variational-Asymptotic Method (VAM) cross-sectional analysis, together with an improved damped nonlinear model for the rigid-body motion analysis of helicopter blades in coupled flap and lead-lag motions. The explicit (direct) integration algorithm implements the perturbation method in order to solve the transient form of the nonlinear intrinsic differential equations of motion and obtain the elasto-dynamic behavior of an accelerating composite blade. The specific problem considered is an accelerating articulated helicopter blade of which its motion is analyzed since it starts rotating from rest until it reaches the steady-state condition. It is observed that the steady-state solution obtained by this method compares very well with other available solutions. The resulting simulation code is a powerful tool for analyzing the nonlinear response of composite rotor blades; and for serving the ultimate aim of efficient noise and vibration control in helicopters.  相似文献   

6.
The dynamics of classical robotic systems are usually described by ordinary differential equations via selecting a minimum set of independent generalized coordinates. However, different parameterizations and the use of a nonminimum set of (dependent) generalized coordinates can be advantageous in such cases when the modeled device contains closed kinematic loops and/or it has a complex structure. On one hand, the use of dependent coordinates, like natural coordinates, leads to a different mathematical representation where the equations of motion are given in the form of differential algebraic equations. On the other hand, the control design of underactuated robots usually relies on partial feedback linearization based techniques which are exclusively developed for systems modeled by independent coordinates. In this paper, we propose a different control algorithm formulated by using dependent coordinates. The applied computed torque controller is realized via introducing actuator constraints that complement the kinematic constraints which are used to describe the dynamics of the investigated service robotic system in relatively simple and compact form. The proposed controller is applied to the computed torque control of the planar model of the ACROBOTER service robot. The stability analysis of the digitally controlled underactuated service robot is provided as a real parameter case study for selecting the optimal control gains.  相似文献   

7.

The paper develops an approximate solution to the system of Euler’s equations with additional perturbation term for dynamically symmetric rotating rigid body. The perturbed motions of a rigid body, close to Lagrange’s case, under the action of restoring and perturbation torques that are slowly varying in time are investigated. We describe an averaging procedure for slow variables of a rigid body perturbed motion, similar to Lagrange top. Conditions for the possibility of averaging the equations of motion with respect to the nutation phase angle are presented. The averaging technique reduces the system order from 6 to 3 and does not contain fast oscillations. An example of motion of the body using linearly dissipative torques is worked out to demonstrate the use of general equations. The numerical integration of the averaged system of equations is conducted of the body motion. The graphical presentations of the solutions are represented and discussed. A new class of rotations of a dynamically symmetric rigid body about a fixed point with account for a nonstationary perturbation torque, as well as for a restoring torque that slowly varies with time, is studied. The main objective of this paper is to extend the previous results for problem of the dynamic motion of a symmetric rigid body subjected to perturbation and restoring torques. The proposed averaging method is implemented to receive the averaging system of equations of motion. The graphical representations of the solutions are presented and discussed. The attained results are a generalization of our former works where µ and Mi are independent of the slow time τ and Mi depend on the slow time only.

  相似文献   

8.
复合材料层合板1:1参数共振的分岔研究   总被引:3,自引:0,他引:3  
叶敏  吕敬  丁千  张伟 《力学学报》2004,36(1):64-71
针对复合材料对称铺设各向异性矩形层合板的物理模型,在同时考虑了材料、阻尼和几何等非线性因素后,建立了二自由度非线性参数振动系统动力学控制方程,并应用多尺度法求得基本参数共振下的近似解析解,利用数值模拟分析了系统的分岔和混沌运动.指出了伽辽金截断对系统动力学分析的影响,以及系统进入混沌的途径.  相似文献   

9.
The dynamics of a simplified model of a spinning spacecraft with a circumferential nutational damper is investigated using numerical simulations for nonlinear phenomena. A realistic spacecraft parameter configuration is investigated and is found to exhibit chaotic motion when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitude and frequency. Such a torque, in practice, may arise in the platform of a dual-spin spacecraft under malfunction of the control system or from an unbalanced rotor or from vibrations in appendages. The equations of motion of the model are derived with Lagrange's equations using a generalisation of the kinetic energy equation and a linear stability analysis is given. Numerical simulations for satellite parameters are performed and the system is found to exhibit chaotic motion when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitude and frequency. The motion is studied by means of time history, phase space, frequency spectrum, Poincaré map, Lyapunov characteristic exponents and Correlation Dimension. For sufficiently large values of torque amplitude, the behaviour of the system was found to have much in common with a two well potential problem such as a Duffing oscillator. Evidence is also presented, indicating that the onset of chaotic motion was characterised by period doubling as well as intermittency.  相似文献   

10.
讨论了基座存在弹性情况下,载体位置无控、姿态受控的漂浮基空间机械臂惯性空间轨迹跟踪控制及基座弹性振动主动抑制问题。由系统位置几何关系及动量守恒关系,建立了系统运动Jacobi 关系;之后利用拉格朗日方法并结合系统动量守恒关系建立了系统动力学方程。基于奇异摄动理论的两种时间尺度假设,将该方程分解为描写系统刚性运动的慢变子系统与描写系统弹性振动的快变子系统。对慢变子系统设计了基于计算力矩法的轨迹跟踪控制器;对于快变子系统则设计了线性二次最优控制方案。数值仿真证实了提出的控制方法的有效性。  相似文献   

11.
For a nonlinear nonholonomic constrained mechanical system with the action of small forces of perturbation, Lie symmetries, symmetrical perturbation, and a new type of non-Noether adiabatic invariants are presented in general infinitesimal transformation of Lie groups. Based on the invariance of the equations of motion for the system under general infinitesimal transformation of Lie groups, the Lie symmetrical determining equations, constraints restriction equations, additional restriction equations, and exact invariants of the system are given. Then, under the action of small forces of perturbation, the determining equations, constraints restriction equations, and additional restriction equations of the Lie symmetrical perturbation are obtained, and adiabatic invariants of the Lie symmetrical perturbation, the weakly Lie symmetrical perturbation, and the strongly Lie symmetrical perturbation for the disturbed nonholonomic system are obtained, respectively. Furthermore, a set of non-Noether exact invariants and adiabatic invariants are given in the special infinitesimal transformations. Finally, one example is given to illustrate the application of the method and results.  相似文献   

12.
W. Zhang  W. L. Hao 《Nonlinear dynamics》2013,73(1-2):1005-1033
Global bifurcations and multi-pulse chaotic dynamics are studied for a four-edge simply supported composite laminated piezoelectric rectangular plate under combined in-plane, transverse, and dynamic electrical excitations. Based on the von Karman type equations for the geometric nonlinearity and Reddy’s third-order shear deformation theory, the governing equations of motion for a composite laminated piezoelectric rectangular plate are derived. The Galerkin method is employed to discretize the partial differential equations of motion to a three-degree-of-freedom nonlinear system. The six-dimensional non-autonomous nonlinear system is simplified to a three-order standard form by using the method of normal form. The extended Melnikov method is improved to investigate the six-dimensional non-autonomous nonlinear dynamical system in mixed coordinate. The global bifurcations and multi-pulse chaotic dynamics of the composite laminated piezoelectric rectangular plate are studied by using the improved extended Melnikov method. The multi-pulse chaotic motions of the system are found by using numerical simulation, which further verifies the result of theoretical analysis.  相似文献   

13.
In this paper, we use the asymptotic perturbation method to investigate nonlinear oscillations and chaotic dynamics in a rotor-active magnetic bearings (AMB) system with 8-pole legs and the time-varying stiffness. The stiffness in the AMB is considered as the time varying in a periodic form. Because of considering the weight of the rotor, the formulation on the electromagnetic force resultants includes the quadratic and cubic nonlinearities. The resulting dimensionless equations of motion for the rotor-AMB system with the time-varying stiffness in the horizontal and vertical directions are a two-degree-of-freedom nonlinear system with quadratic and cubic nonlinearities and parametric excitation. The asymptotic perturbation method is used to obtain the averaged equations in the case of primary parametric resonance and 1/2 subharmonic resonance. It is found that there exist period-3, period-4, period-6, period-7, period-8, quasiperiodic and chaotic modulated amplitude oscillations in the rotor-AMB system with the time-varying stiffness. It is seen from the numerical results that there are the phenomena of the multiple solutions and the soft-spring type and the hardening-spring type in nonlinear frequency-response curves for the rotor-AMB system. The parametric excitation, or the time-varying stiffness produced by the PD controller is considered to be a controlling force which can control the chaotic response in the rotor-AMB system to a period n motion.  相似文献   

14.
The response of a nonlinear, damped Jeffcott rotor with anisotropic stiffness is considered in the presence of an imbalance. For sufficiently small external torque or large imbalance, resonance capture or rotordynamic stall can occur, whereby the rotational velocity of the shaft is unable to increase beyond the fundamental resonance between the rotational and translational motion. This phenomena provides a mechanism for energy transfer from the rotational to the translational mode. Using the method of averaging a reduced-order model is developed, valid near the resonance, that describes this resonant behavior. The equilibrium points of these averaged equations, which correspond to stationary solutions of the original equations and rotordynamic stall, are described as the applied torque, damping, and anisotropy vary. As the anisotropy increases, assumed to arise from increasing shaft cracks, the torque required to eliminate the possibility of stall increases. However, when the system is started with zero initial conditions, the minimum torque required to pass through the resonance is approximately constant as the anisotropy increases. The predictions from the reduced-order model are verified against numerical simulations of the original equations of motion.  相似文献   

15.
Methods that treat rigid/flexible multibody systems undergoing large motion as well as deformations are often accompanied with inefficiencies and instabilities in the numerical solution due to the large number of state variables, differences in the magnitudes of the rigid and flexible body coordinates, and the time dependencies of the mass and stiffness matrices. The kineto-static methodology of this paper treats a multibody mechanical system to consist of two collections of bulky (rigid) bodies and relatively flexible ones. A mixed boundary condition nonlinear finite element problem is then formulated at each time step whose known quantities are the displacements of the nodes at the boundary of rigid and flexible bodies and its unknowns are the deformed shape of the entire structure and the loads (forces and moments) at the boundary. Partitioning techniques are used to solve the systems of equations for the unknowns, and the numerical solution of the rigid multibody system governing equations of motion is carried out. The methodology is very much suitable in modelling and predicting the impact responses of multibody system since both nonlinear and large gross motion as well as deformations are encountered. Therefore, it has been adopted for the studies of the dynamic responses of ground vehicle or aircraft occupants in different crash scenarios. The kineto-static methodology is used to determine the large motion of the rigid segments of the occupant such as the limbs and the small deformations of the flexible bodies such as the spinal column. One of the most dangerous modes of injury is the amount of compressive load that the spine experiences. Based on the developed method, a mathematical model of the occupant with a nonlinear finite element model of the lumbar spine is developed for a Hybrid II (Part 572) anthropomorphic test dummy. The lumbar spine model is then incorporated into a gross motion occupant model. The analytical results are correlated with the experimental results from the impact sled test of the dummy/seat/restraint system. With this extended occupant model containing the lumbar spine, the gross motion of occupant segments, including displacements, velocities and accelerations as well as spinal axial loads, bending moments, shear forces, internal forces, nodal forces, and deformation time histories are evaluated. This detailed information helps in assessing the level of spinal injury, determining mechanisms of spinal injury, and designing better occupant safety devices.  相似文献   

16.
Gear-motor system is a typically nonlinear system because of many nonlinear factors, such as time-varying meshing stiffness, backlash, and the nonlinear relationship between the electric motor torque and speed. At present, the nonlinear analytical methods can only be used for simplified gear dynamic model. Though the numerical methods can be used for the complicated dynamic model, the quantitative analysis of stability is difficult and rarely conducted. Therefore, a kind of trajectory-based stability preserving dimension reduction (TSPDR) methodology is proposed to investigate nonlinear dynamic characteristics of the gear-motor system. In the TSPDR methodology herein, the complementary cluster center of inertia-relative motion (CCCOI-RM) transformation is chosen and the stability margins are specially defined for distinguishing the stable motion modes of the motor-gear system, to make the TSPDR methodology used in the nonlinear analysis of the gear-motor system. Furthermore, the critical values are obtained for alteration of different motion modes and the nonlinear characteristics of each motion modes are analyzed. At last, combined with modal analysis, the relationship between the stability and resonance of the gear-motor system is revealed.  相似文献   

17.
18.
The nonlinear equations of motion of planar bending vibration of an inextensible viscoelastic carbon nanotube (CNT)-reinforced cantilevered beam are derived. The viscoelastic model in this analysis is taken to be the Kelvin–Voigt model. The Hamilton principle is employed to derive the nonlinear equations of motion of the cantilever beam vibrations. The nonlinear part of the equations of motion consists of cubic nonlinearity in inertia, damping, and stiffness terms. In order to study the response of the system, the method of multiple scales is applied to the nonlinear equations of motion. The solution of the equations of motion is derived for the case of primary resonance, considering that the beam is vibrating due to a direct excitation. Using the properties of a CNT-reinforced composite beam prototype, the results for the vibrations of the system are theoretically and experimentally obtained and compared.  相似文献   

19.
The periodic responses of a strongly nonlinear, single-degree-of-freedom forced oscillator with weak excitation and damping are examined. The presented methodology is based on a regular perturbation expansion, whose first term is the solution of the unforced, and undamped nonlinear problem. Higher order approximations are computed by explicitly solving linear differential equations possessing a periodically varying coefficient. The general theory is used for studying the periodic steady state motions of the periodically forced system. Moreover, it is shown that the presented analysis can be used to analytically study the orbital stability of the identified steady state motions. The proposed method can also be used for studying periodic responses due to nonperiodic transient forces, provided that these responses are close to the O(1) periodic generating solution.  相似文献   

20.
Nonlinear dynamic aeroelasticity of composite wings in compressible flows is investigated. To provide a reasonable model for the problem, the composite wing is modeled as a thin walled beam (TWB) with circumferentially asymmetric stiffness layup configuration. The structural model considers nonlinear strain displacement relations and a number of non-classical effects, such as transverse shear and warping inhibition. Geometrically nonlinear terms of up to third order are retained in the formulation. Unsteady aerodynamic loads are calculated according to a compressible model, described by indicial function approximations in the time domain. The aeroelastic system of equations is augmented by the differential equations governing the aerodynamics lag states to derive the final explicit form of the coupled fluid-structure equations of motion. The final nonlinear governing aeroelastic system of equations is solved using the eigenvectors of the linear structural equations of motion to approximate the spatial variation of the corresponding degrees of freedom in the Ritz solution method. Direct time integrations of the nonlinear equations of motion representing the full aeroelastic system are conducted using the well-known Runge–Kutta method. A comprehensive insight is provided over the effect of parameters such as the lamination fiber angle and the sweep angle on the stability margins and the limit cycle oscillation behavior of the system. Integration of the interpolation method employed for the evaluation of compressible indicial functions at any Mach number in the subsonic compressible range to the derivation process of the third order nonlinear aeroelastic system of equations based on TWB theory is done for the first time. Results show that flutter speeds obtained by the incompressible unsteady aerodynamics are not conservative and as the backward sweep angle of the wing is increased, post-flutter aeroelastic response of the wing becomes more well-behaved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号