首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel magnetic ferrocene‐labelled ionic liquid based on triazolium, [Fe3O4@SiO2@Triazol‐Fc][HCO3], has been synthesized and has been successfully introduced as a recyclable heterogeneous nanocatalyst. The catalytic activity of the novel magnetic nanoparticles was evaluated in the one‐pot three‐component synthesis of a wide variety of Betti bases. A simple, facile and highly efficient green method has been developed for the synthesis of kojic acid‐containing Betti base derivatives at room temperature. Additionally, this new protocol has notable advantages such as short reaction times, green reaction conditions, high yields and simple workup and purification steps. Also, the novel nanocatalyst could be easily recovered using an external magnetic field and reused for six consecutive reaction cycles without significant loss of activity. The newly synthesized nanocatalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller measurements.  相似文献   

2.
Fe3O4@MCM‐41@Zr‐MNPs modified with piperazine is easily prepared and characterized using Fourier transform infrared spectroscopy (FT‐IR), X‐ray powder diffraction (XRD), N2 adsorption–desorption, Transmission electron microscopy (TEM), Energy‐dispersive X‐ray (EDX), Vibrating sample magnetometry (VSM) and Thermogravimetric analysis (TGA) techniques. The characterization results showed that Zr highly dispersed in the tetrahedral environment of silica framework and piperazine is successfully attached to the surface of the nanocatalyst in connection with zirconium. The prepared nanosized reagent (10–30 nm), shows excellent catalytic activity in the synthesis of tetrahydro‐4H‐chromene and pyrano[2,3‐d]pyrimidinone derivatives. All reactions are performed under mild and completely heterogeneous reactions conditions in high yields during short reaction times. On the other hand and due to its superparamagnetic nature the catalyst can be easily separated by the application of an external magnetic field and reused for several times.  相似文献   

3.
The immobilization of sulfonic acid on the surface of Fe3O4 magnetic nanoparticles (MNPs) as a novel acid nanocatalyst has been successfully reported. The morphological features, thermal stability, magnetic properties, and other physicochemical properties of the prepared superparamagnetic core–shell (Fe3O4@PFBA–Metformin@SO3H) were thoroughly characterized using Fourier transform infrared (FTIR), X‐ray diffraction (XRD), energy‐dispersive X‐ray spectroscopy (EDS), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis–differential thermal analysis (TGA‐DTA), atomic force microscopy (AFM), dynamic light scattering (DLS), Brunauer–Emmett–Teller (BET), and vibrating sample magnetometer (VSM) techniques. It was applied as an efficient and reusable catalyst for the synthesis of 2‐(piperazin‐1‐yl) quinoxaline and benzimidazole derivatives via a one‐pot multiple‐component cascade reaction under green conditions. The results displayed the excellent catalytic activity of Fe3O4@PFBA–metformin@SO3H as an organic–inorganic hybrid nanocatalyst in condensation and multicomponent Mannich‐type reactions. The easy separation, simple workup, excellent stability, and reusability of the nanocatalyst and quantitative yields of products and short reaction time are some outstanding advantages of this protocol.  相似文献   

4.
Superparamagnetic nanoparticles of modified thioglycolic acid (γ‐Fe2O3@SiO2‐SCH2CO2H) represent a new, efficient and green catalyst for the one‐pot synthesis of novel spiro[benzo[a ]benzo[6,7]chromeno[2,3‐c ]phenazine] derivatives via domino Knoevenagel–Michael–cyclization reaction of 2‐hydroxynaphthalene‐1,4‐dione, benzene‐1,2‐diamines, ninhydrin and isatin. This novel magnetic organocatalyst was easily isolated from the reaction mixture by magnetic decantation using an external magnet and reused at least six times without significant loss in its activity. The catalyst was fully characterized using various techniques. This procedure was also applied successfully for the synthesis of benzo[a ]benzo[6,7]chromeno[2,3‐c ]phenazines.  相似文献   

5.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

6.
An effective one‐pot, convenient process for the synthesis of 1‐ and 5‐substituted 1H‐tetrazoles from nitriles and amines is described using1,4‐dihydroxyanthraquinone–copper(II) supported on Fe3O4@SiO2 magnetic porous nanospheres as a novel recyclable catalyst. The application of this catalyst allows the synthesis of a variety of tetrazoles in good to excellent yields. The preparation of the magnetic nanocatalyst with core–shell structure is presented by using nano‐Fe3O4 as the core, tetraethoxysilane as the silica source and poly(vinyl alcohol) as the surfactant, and then Fe3O4@SiO2 was coated with 1,4‐dihydroxyanthraquinone–copper(II) nanoparticles. The new catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, thermogravimetric analysis, vibration sample magnetometry, X‐ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm analysis and inductively coupled plasma analysis. This new procedure offers several advantages such as short reaction times, excellent yields, operational simplicity, practicability and applicability to various substrates and absence of any tedious workup or purification. In addition, the excellent catalytic performance, thermal stability and separation of the catalyst make it a good heterogeneous system and a useful alternative to other heterogeneous catalysts. Also, the catalyst could be magnetically separated and reused six times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

8.
Betti base‐modified Fe3O4 nanoparticles have been successfully designed and synthesized for the first time through the condensation of Fe3O4 magnetic nanoparticles coated by (3‐aminopropyl)triethoxysilane with β‐naphthol and benzaldehyde. Their application as a novel magnetic nanocatalyst in the Knoevenagel condensation and also application to immobilization of palladium nanoparticles for Suzuki coupling reactions have been investigated which opens a new field for application of Betti base derivatives in organic transformations. The synthesized inorganic–organic hybrid nanocatalyst has been fully been characterized using Fourier transform infrared, X‐ray diffraction, vibrating sample magnetometry, transmission and scanning electron microscopies, energy‐dispersive X‐ray, wavelength‐dispersive X‐ray and X‐ray photoelectron spectroscopies and inductively coupled plasma techniques. The catalyst was easily separated with the assistance of an external magnet from the reaction mixture and reused for several consecutive runs with no significant loss of its catalytic efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A novel hybrid magnetic nanocatalyst was synthesized by covalent coating of Fe3O4 magnetic nanoparticles with choline chloride–urea deep eutectic solvent using 3‐iodopropyltrimethoxysilane as a linker. The structure of this new catalyst was fully characterized via elemental analysis, transmission and scanning electron microscopies, X‐ray diffraction and Fourier transform infrared spectroscopy. It was employed in the synthesis of various 2‐amino‐4H ‐pyran derivatives in water solution via an easy and green procedure. The desired products were obtained in high yields via a three‐component reaction between aromatic aldehyde, enolizable carbonyl and malononitrile at room temperature. The employed nanocatalyst was easily recovered using a magnetic field and reused four times (in subsequent runs) with less than 8% decrease in its catalytic activity.  相似文献   

10.
CoFe2O4@SiO2‐CPTES‐Guanidine‐Cu(II) magnetic nanoparticles were synthesized and used as a new, inexpensive and efficient heterogeneous catalyst for the synthesis of polyhydroquinolines and 2,3‐dihydroquinazoline‐4(1H)‐ones and for the oxidation of sulfides. The structure of this nanocatalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, X‐ray diffraction and inductively coupled plasma optical emission spectrometry. Simple preparation, high catalytic activity, simple operation, high yields, use of green solvents, easy magnetic separation and reusability of the catalyst are some of the advantages of this protocol.  相似文献   

11.
In the present work, an innovative leach proof nanocatalyst based on dendritic fibrous nanosilica (DFNS) modified with ionic liquid loaded Fe3O4 NPs and CuI salts was designed and applied for the rapid synthesis of imidazo[1,2‐a]pyridines from the reaction of phenyl acetylene, 2‐aminopyridine, and aldehydes in aqueous medium. The structure of the synthesized nanocatalyst was studied by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), flame atomic absorption spectroscopy (FAAS), energy‐dispersive X‐ray (EDX), and X‐ray diffraction (XRD), vapor–liquid–solid (VLS), and adsorption/desorption analysis (Brunauer–Emmett–Teller [BET] equation) instrumental techniques. CuI/Fe3O4NPs@IL‐KCC‐1 with high surface area (225 m2 g?1) and porous structure not only exhibited excellent catalytic activity in aqueous media but also, with its good stability, simply recovered by an external magnet and recycled for eight cycles without significant loss in its intrinsic activity. Higher catalytic activity of CuI/Fe3O4NPs@IL‐KCC‐1 is due to exceptional dendritic fibrous structure of KCC‐1 and the ionic liquid groups that perform as strong anchors to the loaded magnetic nanoparticles (MNPs) and avoid leaching them from the pore of the nanocatalyst. Green reaction media, shorter reaction times, higher yields (71–97%), easy workup, and no need to use the chromatographic column are the advantages of the reported synthetic method.  相似文献   

12.
Superparamagnetic nanoparticles of modified vitamin B3 (Fe3O4@Niacin) represent a new, efficient and green biocatalyst for the one‐pot synthesis of 2‐amino‐3‐cyanopyridine derivatives via four‐component condensation reaction between aldehydes, ketones, malononitrile, and ammonium acetate under microwave irradiation in water. This new magnetic organocatalyst was easily isolated from the reaction mixture by magnetic decantation using an external magnet and reused at least six times without significant degradation in the activity. The catalyst was fully characterized by FT‐IR, XRD, SEM, VSM, UV–Vis, DLS and EDS. Excellent yield, very short reaction time (7–10 min), operational simplicity, easy work‐up procedure, avoidance of hazardous or toxic catalysts and organic solvents are the main advantages of this green methodology which makes it more economic than the other conventional methods.  相似文献   

13.
In this research, Fe3O4@CeO2 (FC) was synthesized using the coprecipitation method and functionalized by an ammonium sulfate solution to achieve a heterogeneous solid acid Fe3O4@CeO2/SO42? (FCA) catalyst. The synthesized bifunctional catalyst was used in the protection process of alcohols and phenols using hexamethyldisilazane (HMDS) at ambient temperature under solvent‐free conditions. Due to its excellent magnetic properties, FCA can easily be separated from the reaction mixture and reused several times without significant loss in its catalytic activity. Excellent yield and selectivity, simple separation, low cost, and high recyclability of the nanocatalyst are outstanding advantages of this procedure. The characterization was carried out using different techniques such as Fourier transform infrared spectroscopy (FT‐IR), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX), X‐ray diffraction (XRD), and vibrating sample magnetometry (VSM).  相似文献   

14.
The efficient synthesis of novel spiro[indeno[1,2‐b]quinoxaline derivatives via the four‐component condensation of amines, ninhydrin, isatoic anhydride, and о‐phenylenediamine derivatives catalyzed by ( 3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) supported on γ‐Fe2O3 as novel heterogenous magnetic nanocatalyst was described. The novel nanocatalyst was characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), vibrating sample magnetometry (VSM), Field Emission Scanning Electron Microscopy (FE‐SEM), and thermal analysis (TGA‐DTG). The nanoparticles covered by (3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) showed enhanced catalytic performance in the preparation of spiro[indeno[1,2‐b]quinoxaline derivatives in excellent yields. Moreover, this method showed several advantages such as mild conditions, high yields, easy work‐up, and being environmentally friendly. The catalyst can be easily separated from the reaction mixture by an external magnet, recycled, and reused several times without a noticeable decrease in catalytic activity.  相似文献   

15.
The synthesis and characterization of an efficient and reusable nanocatalyst, Cu/GA/Fe3O4@SiO2, obtained by ultrasonic‐assisted grafting of guanidineacetic acid on modified Fe3O4@SiO2 core–shell nanocomposite spheres and subsequent immobilization of Cu(II), are described. The catalyst was characterized by means of X‐ray diffraction, scanning and transmission electron microscopies, energy‐dispersive X‐ray spectroscopy, elemental analysis, thermogravimetric analysis, Fourier transform infrared spectroscopy, vibrating sample magnetometry and inductively coupled plasma optical emission spectrometry. The prepared nanocatalyst facilitated an efficient and straightforward friendly procedure for the synthesis of benzodiazepines and imidazoles in ethanol and under solvent‐free conditions, respectively. The nanocatalyst can be easily recovered using a magnet and reused several times without any significant loss of activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This paper reports the green and in situ preparation of Fe3O4@SiO2‐Ag magnetic nanocatalyst synthesized using safflower (Carthamus tinctorius L.) flower extract without the addition of any stabilizers or surfactants. The catalytic performance of the resulting nanocatalyst was examined for the reduction of 4‐nitrophenol (4‐NP), methylene blue (MB) and methyl orange (MO) in an environment‐friendly medium at room temperature. The main factors such as pH, temperature and amount of catalyst influencing the nanocatalyst performance were studied. The apparent rate constants for 4‐NP, MO and MB reduction were calculated, being 0.756 min?1, 0.064 s?1 and 0.09 s?1, respectively. The catalyst was recovered using an external magnet and reused several times with negligible loss of catalytic activity. The as‐synthesized nanoparticles were characterized using powder X‐ray diffraction, transmission electron microscopy, UV–visible, Fourier transform infrared and inductively coupled plasma atomic emission spectroscopies, dynamic light scattering and vibrating sample magnetometry.  相似文献   

17.
The catalytic performance of the superparamagnetic nanocatalyst Fe3O4@SiO2@Sulfated boric acid as a green, recyclable, and acidic solid catalyst in the synthesis of chromeno[4,3,2‐de][1,6]naphthyridine derivatives has been studied. Chromeno[4,3,2‐de][1,6]naphthyridine derivatives via a pseudo four‐component reaction from aromatic aldehydes (1 mmol), malononitrile (2 mmol), and 2′‐hydroxyacetophenone in the presence of Fe3O4@SiO2@Sulfated boric acid (0.004 g) as a nanocatalyst in 3 mL of water as a green solvent at 80°C has been synthesized. The advantages of this method are higher product yields in shorter reaction times, easy recyclability and reusability of the catalyst, and easy work‐up procedures. The nanocatalyst was reused at least six times. The nanocatalyst retained its stability in the reaction, and after reusability, it was separated easily from the reaction by an external magnet.  相似文献   

18.
A moisture‐ and air‐stable heterogenized palladium catalyst was synthesized by coordination of palladium with S‐propyl‐2‐aminothiobenzamide supported on Fe3O4 magnetic nanoparticles. The prepared nanocatalyst was characterized using Fourier transform infrared, energy‐dispersive X‐ray and inductively coupled plasma atomic emission spectroscopies, X‐ray diffraction, vibrating sample magnetometry, transmission and scanning electron microscopies, dynamic laser scattering and thermogravimetric analysis. This catalyst could be dispersed homogeneously in water or poly(ethylene glycol) and further applied as an excellent nano‐organometal catalyst for Suzuki and Heck reactions. The catalyst was easily separated with the assistance of an external magnet from the reaction mixture and reused for several consecutive runs without significant loss of its catalytic efficiency or palladium leaching. The leaching of catalyst was examined using hot filtration and inductively coupled plasma atomic emission spectroscopy. Also, the effects of various reaction parameters on the Suzuki and Heck reactions are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Fe3O4@SiO2@propyltriethoxysilane@o‐phenylendiamine as an environmentally‐benign functionalized silica‐coated magnetic organometallic nanomaterial has been synthesized and characterized by Fourier transforms infrared (FT‐IR) spectroscopy, scanning electron microscopy (SEM) images and energy dispersive X‐ray (EDX) and vibrating sample magnetometer (VSM) analyses. Then, its catalytic activity was investigated for the one‐pot three‐component condensation reaction between dimedone, malononitrile and various substituted aromatic aldehydes to afford the corresponding 2‐amino‐4H‐chromene derivatives under mild reaction conditions. This nanocatalyst can be easily recovered from the reaction mixture by using a magnet and reused for at least five times without significant decrease in catalytic activity.  相似文献   

20.
《中国化学会会志》2017,64(7):727-731
Mn‐[4‐chlorophenyl‐salicylaldimine‐methylpyranopyrazole]Cl2 ([Mn‐4CSMP ]Cl2) as nano‐Schiff base complex was prepared and fully characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, thermal gravimetric analysis, derivative thermogravimetry, scanning electron microscopy, energy‐dispersive X‐ray analysis, and UV–vis spectroscopy. The reactivity of nano‐[Mn‐4CSMP ]Cl2 as a catalyst was tested on the tandem cyclocondensation–Knoevenagel condensation–Michael reaction between phenylhydrazine and ethyl acetoacetate with various aromatic aldehydes to give 4,4′‐(arylmethylene)‐bis‐(3‐methyl‐1‐phenyl‐1H ‐pyrazol‐5‐ol)s derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号