首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
By the reaction of 4‐nitrobenzaldehyde with ethyl acetoacetate, malononitrile and hydrazine hydrate, pyranopyrazole derivative as an active biological compound was synthsized and then reacted with salicylaldehyde and MnCl2.4H2O to afford nano‐Mn‐[4‐nitrophenyl‐salicylaldimine‐methyl pyranopyrazole]Cl2 (nano‐[Mn‐4NSMP]Cl2) for the first time. The produced Schiff base complex with nanostructured was fully characterized by Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), thermal gravimetric analysis (TGA), differential thermal gravimetric (DTG) and scanning electron microscope (SEM) and used it as an efficient catalyst for the preparation of hexahydroquinolines.  相似文献   

2.
By the condensation reaction of benzaldehyde with ethyl acetoacetate, malononitrile and hydrazine hydrate in the presence of FeCl2, a pyranopyrazole derivative was prepared which was then reacted with salicylaldehyde to afford nano‐Fe‐[phenylsalicylaldiminemethylpyranopyrazole]Cl2 (nano‐[Fe‐PSMP]Cl2). The prepared nano‐Schiff base complex was fully characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, differential thermogravimetry, scanning electron microscopy and UV–visible spectroscopy, and was used as an efficient and catalyst for the preparation of pyranopyrazoles.  相似文献   

3.
An imidazolium‐modified hexa‐peri‐hexabenzocoronene derivative (HBC‐C11‐MIM[Cl?]) was designed and synthesized as a stabilizer to fabricate reduced graphene oxide (RGO). The resulting RGO/HBC‐C11‐MIM[Cl?] hybrid shows excellent dispersivity (5.0 mg mL?1) and stability in water. RGO/HBC‐C11‐MIM[Cl?] was comprehensively characterized by using atomic force microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, thermogravimetric analysis, and Raman spectroscopy, thus revealing that one HBC‐C11‐MIM[Cl?] group can stabilize about 178 carbon atoms on the graphene sheets. The obtained hybrid film exhibits a high conductivity of 286 S m?1. Furthermore, the HBC‐C11‐MIM[Cl?]‐modified RGO sheets can be readily dispersed in polar organic solvents upon exchange of the hydrophilic Cl? ions for hydrophobic bis(trifluoromethylsulfonyl) amide (NTf2?) ions.  相似文献   

4.
Solvothermal reactions of 1‐cyanobenzoimidazole, NaN3, and hydrated MIICl2 (M = Mn, Zn, Cu) in a mixture of EtOH/H2O in the presence of NH4Cl afforded a mononuclear complex [Mn(L1)2(H2O)4] ( 1 ), a 3D polymer [Zn(L1)(OH)]n ( 2 ), and a linear polymer {[Cu(Bim)]}n ( 3 ), respectively, where the ligand L1 is formed in‐situ from [3+2] dipolar cycloaddition of N3 with nitrile and the ligand Bim is in‐situ formed from C–N bond cleavage of 1‐cyanobenzoimidazole. (L1 = 5‐benzoimidazoyltetrazolate, Bim = benzoimidazole). All the compounds were characterized by IR spectroscopy, elemental analysis, and thermo‐gravimetric analysis (TGA), and their structures were determined by X‐ray crystallography. The solid state luminescent properties of 2 and 3 were also investigated at room temperature.  相似文献   

5.
Colloidal nanosheets of nickel–manganese layered double hydroxides (LDHs) have been synthesized in high yields through a facile reverse micelle method with xylene as an oil phase and oleylamine as a surfactant. Electron microscopy studies of the product revealed the formation of colloidal nanoplatelets with sizes of 50–150 nm, and X‐ray diffraction, energy dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy studies showed that the Ni–Mn LDH nanosheets had a hydrotalcite‐like structure with a formula of [Ni3Mn(OH)8](Cl?) ? n H2O. We found that the presence of both Ni and Mn precursors was required for the growth of Ni‐Mn LDH nanosheets. As pseudocapacitors, the Ni–Mn LDH nanosheets exhibited much higher specific capacitance than unitary nickel hydroxides and manganese oxides.  相似文献   

6.
Synthesis and Characterization of Novel Five‐ and Six‐coordinate Manganese Complexes as Catechol Dioxygenase Models The five‐ and six‐coordinate manganese complexes [Mn(tphhp)Cl2] {tphhp = N,N′‐bis(2‐pyridylmethyl)‐2‐(2‐pyridyl)hexahydropyrimidine} ( 1 ), [Mn(bpma)Cl](ClO4) {bpma = bis((2‐pyridylmethyl)((1‐methylbenzimidazol‐2‐yl)‐methyl)amine} ( 2 ) and [Mn(L)TCC] {HL = (1‐hydroxy‐4‐nitrobenzyl)((1‐methylimidazol‐2‐yl)methyl)(2‐pyridylmethyl)amine} ( 3 ) were synthesized and characterized by various techniques such as single crystal X‐ray structure analysis, mass spectrometry, IR and UV/vis spectroscopy, cyclic voltammetry, and elemental analysis. 1 and 2 crystallize in the monoclinic space group P21/n (No. 14) ( 1 ) and P21/c (No. 14) ( 2 ). The ligand and the chlorine ions provide the N3Cl2‐donorset in 1 and the N3Cl2‐donorset in 2 , respectively. Compounds 1 and 2 show catalytic activity regarding the oxidation of 3,5‐di‐tertbutylcatechol to 3,5‐di‐tert‐butylchinon. To our knowledge, 1 and 2 are the first five‐coordinate manganese complexes that show catecholase activity. 3 crystallize in the orthorhombic space group P212121 (No. 19) and the ligand and tetrachlorocatechol (TCC) build the N3O3‐donorset in 3 .  相似文献   

7.
Four metal‐organic coordination polymers [Cd(4‐bpcb)1.5Cl2(H2O)] ( 1 ), [Cd(4‐bpcb)0.5(mip)(H2O)2] · 3H2O ( 2 ), [Co(4‐bpcb)(oba)(H2O)2] ( 3 ), and [Ni(4‐bpcb)(oba)(H2O)2] ( 4 ) [4‐bpcb = N,N′‐bis(4‐pyridinecarboxamide)‐1, 4‐benzene, H2mip = 5‐methylisophthalic acid, and H2oba = 4, 4′‐oxybis(benzoic acid)] were synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, elemental analyses, IR spectroscopy, powder X‐ray diffraction, and TG analysis. In complex 1 , two Cl anions serve as bridges to connect two Cd‐(μ1‐4‐bpcb) subunits forming a dinuclear unit, which are further linked by μ2‐bridging 4‐bpcb to generate 1D zigzag chain. Complex 2 shows a 2D 63 network constructed by [Cd‐mip]n zigzag chains and μ2‐bridging 4‐bpcb ligands. Complexes 3 and 4 are isostructural 2D (4, 4) grid networks derived from [M‐oba]n (M = Co, Ni) zigzag chains and [M‐(4‐bpcb)]n linear chains. The 1D chains for 1 and the 2D networks for 2 – 4 are finally extended into 3D supramolecular architectures by hydrogen bonding interactions. The roles of dicarboxylates and central metal ions on the assembly and structures of the target compounds were discussed. Moreover, the thermal stabilities, photoluminescent properties, and photocatalytic activities of complexes 1 – 4 and the electrochemical properties of complexes 3 and 4 were investigated.  相似文献   

8.
The reactions of 4N‐ethyl‐2‐[1‐(pyrrol‐2‐yl)methylidene(hydrazine carbothioamide ( 4 EL1 ) and 4N‐ethyl‐2[1‐(pyrrol‐2‐yl)ethylidene(hydrazine carbothioamide ( 4 EL2 ) with Group 12 metal halides afforded complexes of types [M(L)2X2] (M = Zn, Cd; L = 4 EL1, 4 EL2; X = Cl, Br, I; 1 – 6 , 14 – 19 ) and [M(L)X2] (M = Hg; L = 4 EL1, 4 EL2; X = Cl, Br, I; 7 – 9 , 20 – 22 ). In addition, reaction of 4 EL1 with salts of CuII, NiII, PdII and PtII afforded compounds of type [M(4 EL1–H)2] ( 10 – 13 ). The new compounds were characterized by elemental analysis, FAB mass spectrometry, IR and electronic spectroscopy and, for sufficiently soluble compounds, 1H, 13C and, when appropriate, 113Cd or 199Hg NMR spectrometry. The spectral data suggest that in their complexes with Group 12 metal cations, both thiosemicarbazones are neutral and S‐monodentate; and for [Zn(4 EL1)2I2] ( 3 ), [Cd(4 EL1)2Br2] ( 5 ) and [Hg(4 EL1)Cl2]2 ( 7 ) this was confirmed by X‐ray diffractometry. By contrast, in its complexes with CuII and Group 10 metal cations, 4 EL1 is monodeprotonated and S,N‐bidentate, as was confirmed by X‐ray diffractometry for [Ni(4 EL1–H)2] ( 11 ) and [Pd(4 EL1–H)2] ( 12 ).  相似文献   

9.
Three metal coordination polymers {[Co(L)2(H2O)2]2+ · 2NO3}n ( 1 ), {[Mn(L)2(H2O)2]2+ · 2Cl · 3H2O}n ( 2 ), and [ZnL(ba)2]n ( 3 ) [L = 3,5‐bis(imidazole‐1‐yl)pyridine and Hba = benzoic acid] were synthesized and structurally characterized by IR spectroscopy, elemental analysis, X‐ray powder diffraction, and X‐ray single crystal diffraction. Complex 1 shows a one‐dimensional (1D) chain structure. Adjacent chains are connected by hydrogen bonding and nitrate groups to form a 3D network. Complex 2 features a 2D layer structure. A three‐dimensional network is constructed through the cluster consisting of two chloride ions and three water molecules. Complex 3 shows a 1D zigzag chain structure that further twists together to form a 3D network. The X‐ray powder diffraction patterns were compared with the simulated ones. Moreover, the luminescent properties of 1 – 3 were investigated in the solid state at room temperature, and the thermogravimetric analyses were carried out to study the thermal stability of the three complexes.  相似文献   

10.
A new nano scale Cu‐MOF has been obtained via post‐synthetic metalation by immersing a Zn‐MOF as a template in DMF solutions of copper(II) salts. The Cu‐MOF serves as recyclable nano‐catalyst for the preparation of 5‐substituted 1H‐tetrazoles via [3 + 2] cycloaddition reaction of various nitriles and sodium azide in a green medium (PEG). The post‐synthetic metalated MOF were characterized by FT‐IR spectroscopy, powder X‐ray diffraction (PXRD), atomic absorption spectroscopy (AAS), and energy dispersive X‐ray spectroscopy (EDX) techniques. The morphology and size of the nano‐catalyst were determined by field emission scanning electron microscopy (FE‐SEM).  相似文献   

11.
Yanping Li  Pin Yang 《中国化学》2010,28(5):759-765
A new Cd(II) complex of Cd(H3biim)2(NCS)2Cl2 [H3biim=2‐(2‐1H‐imidazolyl)‐1H‐imidazolium] was synthesized and characterized by elemental analyses, FT‐IR and X‐ray single crystal diffraction. In the X‐ray crystallography structure, the cadmium(II) ion is coordinated by two nitrogen atoms of two 2‐(2‐1H‐imidazolyl)‐ 1H‐imdazolium, two nitrogen atoms of two thiocyanate ions and two Cl?. The interaction of the complex with calf thymus DNA was investigated through electronic absorption spectroscopy, fluorescence spectroscopy, viscosity measurement, cyclic voltammetry and gel electrophoresis. These results show that the Cd(II) complex can electrostatically bind to the phosphate group of DNA backbone. Interestingly, we found that the complex can cleave the pBR322 DNA at pH=7.2 and 37°C.  相似文献   

12.
Nimustine hydrochloride [systematic name: 4‐amino‐5‐({[N‐(2‐chloroethyl)‐N‐nitrosocarbamoyl]amino}methyl)‐2‐methylpyrimidin‐1‐ium chloride], C9H14ClN6O2+·Cl, is a prodrug of CENU (chloroethylnitrosourea) and is used as a cytostatic agent in cancer therapy. Its crystal structure was determined from laboratory X‐ray powder diffraction data. The protonation at an N atom of the pyrimidine ring was established by solid‐state NMR spectroscopy.  相似文献   

13.
A new series of Brønsted–Lewis acidic diethyldisulfoammonium chlorometallates, [DEDSA][FeCl4] and [DEDSA]2[Zn2Cl6], were synthesized as solid materials from the reaction of [(Et)2N(SO3H)2][Cl] ionic liquid with transition metal chlorides (FeCl3 and ZnCl2) at 80 °C in neat condition for 2 h. The chlorometallates were fully characterized using various spectroscopic and analytical techniques such as Fourier transform infrared, UV–visible and Raman spectroscopies, powder X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and thermogravimetric analyses, Hammett acidity and elemental analyses. Their catalytic activity was studied as reusable heterogeneous catalysts for the three‐component synthesis of novel 14‐aryl‐7‐(N‐phenyl)‐14H‐dibenzo[a,j]acridines under solvent‐free conditions at 100 °C.  相似文献   

14.
Mn(III)–pentadentate Schiff base complex supported on multi‐walled carbon nanotubes as a recyclable and reusable, green and nano‐heterogeneous catalyst was designed and fully characterized using infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy , inductively coupled plasma mass spectrometry, elemental analysis and thermogravimetric analysis. A facile, eco‐friendly, mild and green procedure was developed for the one‐pot three‐component synthesis of tetrahydrobenzo[b ]pyrans via tandem Knoevenagel–Michael cyclocondensation reactions between aromatic aldehydes, 1,3‐diones and malononitrile using a catalytic amount of Mn(III)–pentadentate Schiff base complex supported on MWCNTs as an efficient recyclable heterogeneous catalyst under solvent‐free conditions at room temperature. This process has the advantages of easy availability, stability, recyclability and eco‐friendliness of the catalyst, short reaction times, high to excellent yields and simple work‐up procedure.  相似文献   

15.
Nano‐Zn‐[2‐boromophenyl‐salicylaldimine‐methylpyranopyrazole]Cl2 (nano‐[Zn‐2BSMP]Cl2) as a nanoparticle Schiff base complex and a catalyst was introduced for the solvent‐free synthesis of 4‐((2‐hydroxynaphthalen‐1‐yl)(aryl)methyl)‐5‐methyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐ones by the multicomponent condensation reaction of various aromatic aldehydes, β‐naphthol, ethyl acetoacetate, and phenyl hydrazine at room temperature.  相似文献   

16.
Reaction of group 12 metal dihalides in ethanolic media with 2‐acetylpyridine 4N‐phenylthiosemicarbazone ( H4PL ) and 2‐acetylpyridine‐N‐oxide 4N‐phenylthiosemicarbazone ( H4PLO ) afforded the compounds [M(H4PL)X2] (X = Cl, Br, M = Zn, Cd, Hg; X = I, M = Zn, Cd) ( 1–8 ), [Hg(4PL)I]2 ( 9 ) and [M(H4PLO)X2] (X = Cl, Br, I, M = Zn, Cd, Hg) ( 10–18 ). H4PL , H4PLO and their complexes were characterized by elemental analysis and by IR and 1H and 13C NMR spectroscopy (and the cadmium complexes by 113Cd NMR spectroscopy), and H4PL , H4PLO , ( 5 · DMSO) and ( 9 ) were additionally studied by X‐ray diffraction. H4PL is N,N,S‐tridentate in all its complexes, including 9 , in which it is deprotonated, and H4PLO is in all cases O,N,S‐tridentate. In all the complexes, the metal atoms are pentacoordinate and the coordination polyhedra are redistorted tetragonal pyramids. In assays of antifungal activity against Aspergillus niger and Paecilomyces variotii, the only compound to show any activity was [Hg(H4PLO)I2] ( 18 ).  相似文献   

17.
A two‐dimensional MnII coordination polymer (CP), poly[bis[μ2‐2,6‐bis(imidazol‐1‐yl)pyridine‐κ2N3:N3′]bis(thiocyanato‐κN)manganese] [Mn(NCS)2(C11H9N5)2]n, (I), has been obtained by the self‐assembly reaction of Mn(ClO4)2·6H2O, NH4SCN and bent 2,6‐bis(imidazol‐1‐yl)pyridine (2,6‐bip). CP (I) was characterized by FT–IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. The crystal structure features a unique two‐dimensional (4,4) network with one‐dimensional channels. The luminescence and nitrobenzene‐sensing properties were explored in a DMF suspension, revealing that CP (I) shows a strong luminescence emission and is highly sensitive for nitrobenzene detection.  相似文献   

18.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

19.
Reactions of Hpymtza [Hpymtza = 5‐(2‐pyrimidyl)tetrazole‐1‐acetic acid] with MnCl2 · 4H2O under different pH conditions, afforded the complexes [Mn(pymtza)2(H2O)4] ( 1 ) and [Mn2(pymtza)2Cl2(EtOH)] · H2O ( 2 ). The compounds were structurally characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. Compound 1 shows a mononuclear structure, whereas complex 2 has a 1D chain structure. In compound 1 , the pymtza ligand only acts in a monodentate manner to coordinate to one central MnII atom by one carboxylate atom, In 2 , pymtza acts as tetradentate ligand to connect three MnII ions. Compounds 1 and 2 display 3D networks by hydrogen bonding interactions. Furthermore, the luminescence properties of Hpymtza as well as compounds 1 and 2 were investigated at room temperature in the solid state.  相似文献   

20.
Different kinds of counterions (such as NO3, ClO4, and Cl) play a special role in controlling the framework of coordination compounds. Using this strategy, 5‐aminotetrazole‐1‐propionic acid (Hatzp) was selected to react with praseodymium(III) nitrate or perchlorate in the same solvent system, producing two different coordination compounds, [Pr2(atzp)4(H2O)8] · 2NO3 · 2H2O ( 1 ) and [Pr2(atzp)6(H2O)2] · H2O ( 2 ). These compounds were structurally characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. X‐ray diffraction analysis revealed that compound 1 displays a dinuclear structure, whereas 2 shows a one dimensional zigzag chain framework. Furthermore, the luminescence properties of compounds 1 and 2 were investigated at room temperature in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号