首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 145 毫秒
1.
The chemoselectivity in the reaction of 2‐diazo‐3‐oxo‐3‐phenylpropanal ( 1 ) with aldehydes and ketones in the presence of Et3N was investigated. The results indicate that 1 reacts with aromatic aldehydes with weak electron‐donating substituents and cyclic ketones under formation of 6‐phenyl‐4H‐1,3‐dioxin‐4‐one derivatives. However, it reacts with aromatic aldehydes with electron‐withdrawing substituents to yield 1,3‐diaryl‐3‐hydroxypropan‐1‐ones, accompanied by chalcone derivatives in some cases. It did not react with linear ketones, aliphatic aldehydes, and aromatic aldehydes with strong electron‐donating substituents. A mechanism for the formation of 1,3‐diaryl‐3‐hydroxypropan‐1‐ones and chalcone derivatives is proposed. We also tried to react 1 with other unsaturated compounds, including various olefins and nitriles, and cumulated unsaturated compounds, such as N,N′‐dialkylcarbodiimines, phenyl isocyanate, isothiocyanate, and CS2. Only with N,N′‐dialkylcarbodiimines, the expected cycloaddition took place.  相似文献   

2.
蔺楠  王剑波等 《中国化学》2002,20(8):789-794
Electron impact-induced fragmentation mechanism of Trans-α-Aryl-β-enamino esters were investigated using mass-analyzed ion kinetic energy (MIKE) spectrometry and high resolution accurate mass data It was found that the main characteristic fragmentations of compounds studied were:an odd electron ion M^ -EtOH was formed by losing a neutral molecule of ethanol;and the skeletal rearrangements took place;and the ring opening reaction happened after losing a carbon monoxide;and the typical McLafferty rearrangement underwent in ester group.The cycliztion reation caused by losing neutral molecule of TsNH2 due to the ortho-effects of substituted group of gromatic ring was also observed.  相似文献   

3.
One‐pot, three‐component condensation of guanidine, ethylbenzoylacetate and various aromatic aldehydes in the presence of NaHCO3 have been investigated by microwave irradiation. The aromatic aldehydes bearing electron‐withdrawing groups undergo condensation with guanidine and ethylbenzoyl‐acetate to afford ethyl‐2‐amino‐4‐aryl‐1,4‐dihydro‐6‐phenylpyrimidine‐5‐carboxylate derivatives via Biginelli reaction. However, reaction of the aromatic aldehydes having electron‐releasing groups with guanidine and ethylbenzoylacetate did not give the corresponding dihydropyrimidines. Instead, novel 2‐amino‐5‐benzoyl‐5,6‐dihydro‐6‐arylpyrimidine‐4(3H)‐ones were obtained via an unexpected mechanism.  相似文献   

4.
(+)‐Tartaric acid‐catalyzed aminobromination of α,β‐unsaturated ketones, α,β‐unsaturated esters and simple olefins utilizing TsNH2/NBS as the nitrogen/halogen sources at room temperature without protection of inert gases achieved good yields (up to 92% yield) of vicinal haloamino products with excellent regio‐ and stereoselectivity, even just 10% of (+)‐tartaric acid was used as catalyst. The regio‐ and stereochemistry was unambiguously confirmed by X‐ray structural analysis of products 2b and 12c . The electron‐rich and deficient olefins show significant differences in activity to the aminobromination reaction and give the opposite regioselectivities. The 21 cases have been investigated which indicated that our protocol has the advantage of a large scope of olefins. Additionally, tartaric acid as catalyst has the advantage of avoiding any hazardous metals retained in products.  相似文献   

5.
In the presence of zinc chloride, the in situ generated β‐enamino ester from the reaction of morpholine, piperidine and pyrrolidine with methyl propiolate reacted, with aromatic aldehydes and thiourea in ethanol resulting in the functionalized tetrahydropyrimidin‐2‐thiones in satisfactory yields and with good diastereoselectivity. When aromatic aldehydes bearing electron‐withdrawing group were used in the reaction, the 4‐hydroxytetrahydropyrimidin‐2‐thione derivatives were obtained as the main product.  相似文献   

6.
A regioselective Biginelli‐like reaction of alicyclic mono‐ketones, aromatic aldehydes, and urea in ionic liquid [BPY]BF4 has been investigated. The process is controlled by the size of alicyclic mono‐ketones and the steric hindrance of aromatic aldehydes. The reaction of cyclopentanone with urea and aromatic aldehydes afforded 7‐arylidene‐3,4,6,7‐tetrahydro‐4‐aryl‐1H‐cyclopenta[d]pyrimidin‐2(5H)‐ones ( 4 ). When cyclohexanone was used as the source of active methylene to react with urea and aldehydes with slight steric hindrance groups under the same condition, 8‐arylidene‐3,4,5,6,7, 8‐hexahydro‐4‐arylquinazolin‐2(1H)‐ones ( 6 ), a homologue of 4 , were yielded, whereas 4,8‐bisaryloc‐tahydro‐1H‐pyrimido[5,4‐i]‐quinazoline‐2,10(3H,11H)‐diones ( 7 ) were obtained via the simple one‐pot reaction of cyclohexanone, urea, and aromatic aldehydes with high steric hindrance groups. The possible transitional states and mechanism of the regioselective process were discussed.  相似文献   

7.
NiAl2O4 spinel nanocrystals were synthesized as mesoporous catalysts and were fully characterized using Fourier‐transform infrared spectroscopy (FT‐IR), X‐ray diffraction patterns (XRD), scanning electron microscopy (SEM), and Energy‐dispersive X‐ray spectroscopy (EDS). These nanocrystals catalyzed the synthesis of 2,3‐dihydroquinazolin‐4(1H)‐one derivatives via a one‐pot, three‐component condensation reaction of aromatic aldehydes, isatoic anhydride, and ammonium acetate or primary aromatic amine under microwave irradiation. By far, the most obvious advantages of the offered process are efficiency and recyclability of the catalyst as well as a significantly shorter reaction time.  相似文献   

8.
《中国化学会会志》2017,64(7):727-731
Mn‐[4‐chlorophenyl‐salicylaldimine‐methylpyranopyrazole]Cl2 ([Mn‐4CSMP ]Cl2) as nano‐Schiff base complex was prepared and fully characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, thermal gravimetric analysis, derivative thermogravimetry, scanning electron microscopy, energy‐dispersive X‐ray analysis, and UV–vis spectroscopy. The reactivity of nano‐[Mn‐4CSMP ]Cl2 as a catalyst was tested on the tandem cyclocondensation–Knoevenagel condensation–Michael reaction between phenylhydrazine and ethyl acetoacetate with various aromatic aldehydes to give 4,4′‐(arylmethylene)‐bis‐(3‐methyl‐1‐phenyl‐1H ‐pyrazol‐5‐ol)s derivatives.  相似文献   

9.
The Fe3O4@SiO2 core‐shell nanocatalyst were prepared and efficiently used for four‐component coupling reaction of aromatic aldehydes, malononitrile, ethyl acetoacetate and hydrazine hydrate in water/ethanol mixture. Various aromatic aldehydes possessing electron‐withdrawing and electron‐donating groups in different positions on the ring were successfully transformed to substituted pyranopyrazoles in high yields in short time. The nanocatalyst was easily recovered, and reused five times without significant loss in cata‐ lytic activity and performance. The structure, size and morphology of the nanosized catalyst were studied by various techniques such as Fourier transform infrared spectroscopy, powder X‐ray diffraction, dynamic light scattering and transmission electron microscopy.  相似文献   

10.
Enantioselective addition of diethylzinc to a series of aromatic aldehydes was developed using a modular amino acids and ${\bf \beta}$ ‐amino alcohol‐based chiral ligand (2R)‐N‐[(1R,2S)‐1‐hydroxy‐1‐phenylpropan‐2‐yl]‐3‐phenyl‐2‐(tosylamino) propanamide ( 1f ) without using titanium complex. The catalytic system employing 15 mol% of 1f was found to promote the addition of diethylzinc (ZnEt2) to a wide range of aromatic aldehydes with electron‐donating and electron‐withdrawing substituents, giving up to 97% ee of the corresponding secondary alcohol under mild conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Nano‐Zn‐[2‐boromophenyl‐salicylaldimine‐methylpyranopyrazole]Cl2 (nano‐[Zn‐2BSMP]Cl2) as a nanoparticle Schiff base complex and a catalyst was introduced for the solvent‐free synthesis of 4‐((2‐hydroxynaphthalen‐1‐yl)(aryl)methyl)‐5‐methyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐ones by the multicomponent condensation reaction of various aromatic aldehydes, β‐naphthol, ethyl acetoacetate, and phenyl hydrazine at room temperature.  相似文献   

12.
NMR reaction following experiments were used to find optimal conditions for the barbituric acid double addition to aromatic and heteroaromatic carboxaldehydes. It was established that aromatic aldehydes with electron‐donating substituents such as hydroxy, methoxy, and dimethylamino produce only the single addition barbituric acid adduct (barbituric acid benzylidenes). If these electron‐donating substituents are transformed into electron‐withdrawing substituents by virtue of protonation (NMe2 to NHMe2+) then the double barbituric acid adduct becomes the sole product of the reaction. This is also true regardless of the reaction media if strong electron‐withdrawing substituents (such as a nitro group) are present. Considering that the reactive species for nitrogen containing aromatic heterocycles are actually the conjugated acids (electron deficient molecule) only the double barbituric acid adducts are isolated. All synthetic procedures presented are applicable to multi‐gram scale preparations of double barbituric acid adducts.  相似文献   

13.
The Biginelli‐type compounds, 5‐unsubstituted 3,4‐dihydropyrimdin‐2(1H)‐ones were synthesized by a one‐pot three‐component condensation of aromatic aldehydes, aromatic ketones and urea in the presence of SnCl4 · 5H2O under solvent‐free conditions. The advantages of this method are short reaction time (4–10 min), excellent yields (74–97%), inexpensive catalyst and solvent‐free conditions. A plausible mechanism was proposed.  相似文献   

14.
Sodium tetrafluoroborate (NaBF4) is found to catalyze the three component condensation of an aldehyde, 1,3‐dicarbonyl compound and urea or thiourea to afford the corresponding 3,4‐dihydropyrimidin‐2(1 H)‐ones and thiones in high yields. This method is very useful for the synthesis of a wide range of 3,4‐dihydropyrimidin‐2(1 H)‐ones and thiones from aromatic, heterocyclic, α,β‐unsaturated aldehydes and aliphatic aldehydes.  相似文献   

15.
5‐Amino‐thieno[3,2‐c]pyrazole derivative 2 was prepared by Gewald reaction in a one‐pot procedure. The amino group of compound 2 like primary aromatic amine formed the diazonium salt when treated with NaNO2/HCl, followed by coupling with different nucleophiles to yield the azo coupling products 3a – d . The reactivity of 5‐amino‐thienopyrazole 2 has been investigated towards different electrophilic reagents such as aromatic aldehydes, alkyl halide, acid chloride, acid anhydride, phenyl isothiocyanate, carbon disulfide, ethyl glycinate, and thioacetamide, which afforded the reaction products 4 – 14 , respectively.  相似文献   

16.
Zirconium(IV) chloride catalyzed efficient one-pot synthesis of β-amino/β-acetamido carbonyl compounds at room temperature is described. In the presence of ZrCl4, the three-component Mannich-type reaction via a variety of in situ generated aldimines, with various ketones, aromatic aldehydes and aromatic amines in ethanol, led to the formation of β-amino carbonyl compounds and the four-component Mannich-type reaction of aromatic aldehydes with various ketones, acetonitrile and acetyl chloride resulted in the corresponding β-acetamido carbonyl compounds in high to excellent yields. This methodology has also been applied towards the synthesis of dimeric β-amino/β-acetamido carbonyl compounds.  相似文献   

17.
Fe3O4@SiO2@propyltriethoxysilane@o‐phenylendiamine as an environmentally‐benign functionalized silica‐coated magnetic organometallic nanomaterial has been synthesized and characterized by Fourier transforms infrared (FT‐IR) spectroscopy, scanning electron microscopy (SEM) images and energy dispersive X‐ray (EDX) and vibrating sample magnetometer (VSM) analyses. Then, its catalytic activity was investigated for the one‐pot three‐component condensation reaction between dimedone, malononitrile and various substituted aromatic aldehydes to afford the corresponding 2‐amino‐4H‐chromene derivatives under mild reaction conditions. This nanocatalyst can be easily recovered from the reaction mixture by using a magnet and reused for at least five times without significant decrease in catalytic activity.  相似文献   

18.
The cationic organotin cluster [t‐Bu2Sn(OH)(H2O)]22+2OTf? is easy to prepare and stable in air. The catalytic activity of [t‐Bu2Sn(OH)(H2O)]22+2OTf? as a neutral organotin Lewis acid catalyst is probed through the one‐pot three‐component syntheses of 5‐substituted 1H‐tetrazoles from aldehydes, hydroxylamine hydrochloride and sodium azide, and of 2,4,6‐triarylpyridines from aromatic aldehydes, substituted acetophenones and ammonium acetate. The reactions proceed well in the presence of 1 mol% of [t‐Bu2Sn(OH)(H2O)]22+2OTf? in water and provide the corresponding 5‐substituted 1H‐tetrazoles and 2,4,6‐triarylpyridines in good to excellent yields. The method reported has several advantages such as the catalyst being neutral, low catalyst loading and use of water as a green solvent.  相似文献   

19.
New, sterically demanding 1,3‐dialkylbenzimidazolium salts ( 2a–c ) as N‐heterocyclic‐carbene precursors have been synthesized and characterized. The ortho position of aromatic aldehydes was directly and selectively arylated with aryl chlorides in the presence of a catalytic system prepared in situ from Pd(OAc)2, 1,3‐dialkylbenzimidazolium chlorides ( 2a–c ), and Cs2CO3. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:569–574, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20479  相似文献   

20.
The novel coumarin‐3‐carboxamides (=2‐oxo‐2H‐1‐benzopyran‐3‐carboxamides) 5a – 5g containing lipophilic spacers were synthesized through the Ugi‐four‐component reaction (Scheme 1). The reactions of aromatic aldehydes 1 , 4,4′‐oxybis[benzenamine] or 4,4′‐methylenebis[benzenamine] as diamine 2 , coumarin‐3‐carboxylic acid (=2‐oxo‐2H‐benzopyran‐3‐carboxylic acid; 3 ), and alkyl isocyanides 4 lead to the desired substituted coumarin‐3‐carboxamides 5a – 5g at room temperature with high bond‐forming efficiency. These novel coumarin derivatives exhibit brilliant fluorescence at 544 nm in CHCl3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号