首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis procedures are described for the new stable mixed ligand complexes, [Pd(Hpa)(pa)]Cl, [Pd(pa)(H2O)2]Cl, [Pd(pa)(en)]Cl, [Pd(pa)(bpy)]Cl, [Pd(pa)(phen)Cl], [Pd(pa)(pyq)Cl], cis-[MoO2(pa)2], [Ag(pa)(bpy)], [Ag(pa)(pyq)], trans-[UO2(pa)(pyq)](BPh4) and [ReO(PPh3)(pa)2]Cl (Hpa = 2-piperidine-carboxylic acid, en = ethylene diamine, bpy = 2,2′-bipyridyl, phen = 1,10-phenanthroline, pyq = 2(2′-pyridyl)quinoxaline). Their elemental analyses, conductance, thermal measurements, Raman, IR, electronic, 1H-n.m.r. and mass spectra have been measured and discussed. 2-Piperidine-carboxylic acid and its palladium complexes have been tested as growth inhibitors against Ehrlich ascites tumour cells (EAC) in Swiss albino mice.  相似文献   

2.
(RCp)(R′Ind)ZrCl2 complexes 1 – 6 (Cp = cyclopentadienyl; Ind = indenyl; 1 , R = PhCH2 and R′ = H; 2 , R = PhCH2 and R′ = PhCH2; 3 , R = PhCH2CH2 and R′ = H; 4 , R = PhCH2CH2 and R′ = PhCH2; 5 , R = o‐Me? PhCH2CH2 and R′ = H; 6 , R = o‐Me? PhCH2 and R′ = H) were synthesized and characterized with 1H NMR, elemental analysis, mass spectrometry, and infrared spectroscopy. Their catalytic behaviors were compared with those of (Et3SiCp)(PhCH2CH2Cp)ZrCl2, (PhCH2Cp)2ZrCl2, (PhCH2‐ CH2Cp)2ZrCl2, (o‐Me? PhCH2CH2Cp)2ZrCl2, and (Ind)2ZrCl2 in ethylene polymerization in the presence of methylaluminoxane. Complex 5 showed high activity up to 2.43 × 106 g of polyethylene (PE)/mol of Zr h, and complex 4 produced PE with bimodal molecular weight distributions. The methyl group at the 2‐position of phenyl in complex 5 increased the activity greatly. The relationships between the polymerization results and the structures were analyzed with NMR spectral data. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1261–1269, 2005  相似文献   

3.
The phosphite complexes cis-[PtMe2L(SMe2)] in which L = P(OiPr)3, 1a, or L = P(OPh)3, 1b, were synthesized by the reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of L. If 4 equiv. of L was used the bis-phosphite complexes cis-[PtMe2L2] in which L = P(OiPr)3, 2a, or L = P(OPh)3, 2b, were obtained. The reaction of cis-[Pt(p-MeC6H4)2(SMe2)2] with 2 equiv. of L gave the aryl bis-phosphite complexes cis-[Pt(p-MeC6H4)2L2] in which L = P(OiPr)3, 2a′, or L = P(OPh)3, 2b′. Use of 1 equiv. of L in the latter reaction gave the bis-phosphite complex along with the starting complex in a 1:1 ratio.The complexes failed to react with MeI. The reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of the phosphine PPh3 gave cis-[PtMe2(PPh3)2] and cis-[PtMe2(PPh3)(SMe2)] along with unreacted starting material. Reaction of cis-[PtMe2L(SMe2)], 1a and 1b with the bidentate phosphine ligand bis(diphenylphosphino)methane, dppm = Ph2PCH2PPh2, gave [PtMe2(dppm)], 8, along with cis-[PtMe2L2], 2. The reaction of cis-[PtMe2L(SMe2)] with 1/2 equiv. of the bidentate N-donor ligand NN = 4,4′-bipyridine yielded the binuclear complexes [PtMe2L(μ-NN)PtMe2L] in which L = P(OiPr)3, 3a, or L = P(OPh)3, 3b.The complexes were fully characterized using multinuclear NMR (1H, 13C, 31P, and 195Pt) spectroscopy.  相似文献   

4.
Diacetylplatinum(II) complexes [Pt(COMe)2(N^N)] (N^N = bpy, 3a; 4,4′-t-Bu2-bpy, 3b) were found to undergo oxidative addition reactions with organyl halides. The reaction of 3a with methyl iodide and propargyl bromide led to the formation of the cis addition products (OC-6-34)-[Pt(COMe)2(R)X(bpy)] (R = Me, X = I, 4a; CH2C≡CH, X = Br, 4k). Analogous reactions of 3a with ethyl iodide, benzyl bromide, and substituted benzyl bromides, 3-(bromomethyl)pyridine, 2-(bromomethyl)thiophene, allyl bromide, and cyclohex-2-enyl bromide led to exclusive formation of the trans addition products (OC-6-43)-[Pt(COMe)2(R)X(bpy)] (X = I, R = Et, 4b; X = Br, R = CH2C6H5, 4c; CH2C6H4(o-Br), 4d; CH2C6H4(p-COOH), 4e; CH2-3-py (3-pyridylmethyl), 4f; CH2-2-tp (2-thiophenylmethyl), 4g; CH2CH=CH2, 4h; c-hex-2-enyl (cyclohex-2-enyl), 4i). All complexes 4 were characterized by microanalysis, 1H and 13C NMR and IR spectroscopy. Additionally, complexes 4a, 4f, and 4g were characterized by single-crystal X-ray diffraction analyses. Reactions of 3a and 3b with o-, m- and p-bis(bromomethyl)benzene, respectively, led to the formation of dinuclear platinum(IV) complexes [{Pt(COMe)2Br(N^N)}2-{μ-(CH2)2C6H4}] (5). These complexes were characterized by microanalysis, IR spectroscopy, and depending on their solubility by 1H and 13C NMR spectroscopy, too. A single-crystal X-ray diffraction analysis of complex [{Pt(COMe)2Br(bpy)}2{μ-m-(CH2)2C6H4}] (5b) confirmed its dinuclear composition. The solid-state structures of 4a, 4f, 4g, and 5b are discussed in terms of C–H···O and O–H···O hydrogen bonds as well as π–π stacking between aromatic rings.  相似文献   

5.
New mixed-anion cadmium(II) complexes of 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) ligands, [Cd(phen)2(NO2)1.65(NO3)0.35] and Cd(bpy)(ClO4)(CH3COO) have been synthesized and characterized by elemental analysis, IR-, 1H NMR-, 13C- NMR and 113Cd NMR spectroscopy. The single crystal X-ray data of [Cd(phen)2(NO2)1.65(NO3)0.35] show the complex to be a monomer and that the Cd atom has an unsymmetrical eight-coordinate geometry, being coordinated by four nitrogen atoms of ‘phen’ ligands and four oxygen atoms of the nitrite and nitrate anions. There is a short ππ stacking interaction between parallel aromatic rings.  相似文献   

6.
Reactions of PhAsCl2 with BrMg(CH2)nMgBr (n = 4 or 5) in THF gave phenylarsacycloalkanes as colourless oily liquids which could be distilled under vacuum. Treatment of PhAs(CH2)n­with MCl2(RCN)2 (M = Pd or Pt; R = Ph­or Me) afforded mononuclear complexes, [MCl2{PhAs(CH2)n}2]. Reactions with [Pt2Cl2(μ‐Cl)2(PEt3)2] gave mixed‐ligand complexes, [PtCl2(PEt3){PhAs(CH2)n]. The palladium complexes adopt a trans geometry whereas the platinum complexes exist in a cis configuration. The crystal and molecular structure of [PdCl2(PhAsCH2CH2CH2CH2CH2)2] was determined by X‐ray diffraction methods. The molecule consists of a square‐planar palladium atom with trans chlorides and trans arsa ligands. The six‐membered ‘AsC5′ ring adopts a chair conformation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Summary Treatment of complexestrans-[M(CNBu-t)2(dppe)2][(1) M = Mo or W, dppe = Ph2PCH2CH2PPh2] with protic acid gives a mixture of the aminocarbyne complexestrans- pluscis-[M(CNHBu-t)(CNBu-t)(dppe)2]+ (2) and the hydridocompounds [MH(CNBu-t)2(dppe)2]+ (3), whereas reaction with an alkylating agent (R+) appears to give the dialkylaminocarbyne compounds [M(CNRBu-t)(CNBu-t)(dppe)2]+ (4) also as a mixture of thetrans andcis isomers.  相似文献   

8.
Four asymmetric cobalt(III) complexes, [Co(bpy)2(aip)]3+, [Co(bpy)2(pyip)]3+, [Co(phen)2(aip)]3+, and [Co(phen)2(pyip)]3+ (bpy = 2,2,bipyridine, phen = 1,10-phenathroline), (pyip = 2-(1-pyrenyl)-1H-imidazo[4,5-f][phen], (aip = 2-(9-anthryl)-1H-imidazo[4,5,-f][phen], have been synthesized and characterized. Their interaction with calf thymus DNA (CT-DNA) was investigated by physico-chemical methods and photocleavage. The size and shape of the ligands have a marked effect on the DNA-binding affinity of the complexes. Irradiation of pBR322 DNA with these novel cobalt(III) complexes results in nicking of the plasmid DNA. Toxicity and induced cell death investigations revealed that the complexes of pyip had higher toxicity than those of aip. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Summary The reactions of the tridentate Schiff base ligandN-(2-hydroxyphenyl) salicylideneimine (HOPhsalH) with oxotetrachlororhenate (IV) have been investigated. The complexes (Bu4N)[ReOCl3(HOPhsal)], (Bu4N)[ReOCl2(OPhsal)],cis- [ReOCl(MeOH)(OPhsal)],trans-[ReOCl(MeOH)(OPhsal)] (1), trans-[ReOCl(OH2)(OPhsal)] · Et2O (2), trans-[ReOCl(OH2)(OPhsal)] · Me2CO,cis-[ReOCl(PPh3)(OPhsal)],cis-[ReOCl(PMe2Ph)(OPhsal)](3) have been synthesized and characterized. The crystal structures of(1), (2) and(3) have been solved from three-dimensional x-ray data by Patterson and Fourier methods and refined by least-squares methods to R 0.10 for(1), 0.042 for(2) and 0.059 for(3). In all the three complexes, the ligands surrounding the rhenium atom are at the apices of a distorted octahedron, with the equatorial ONO donor atoms of the tridentate Schiff base bent away from the Ooxo and toward the loosely bound MeOH in(1), H2O in(2) and Cl in(t3). The fourth equatorial substituent is Cl (1 and2) and PMe2Ph(3) and the rhenium atoms lie 0.30–0.37 Å above the best plane through the four equatorial atoms, in the direction of the Ooxo. All interatomic distances and angles are normal.  相似文献   

10.
Qi  Yuhua  Geng  Bing  Chen  Zhonghe 《Structural chemistry》2011,22(4):917-924
The structures and stability of pentacoordinate germylenoid PhCH2(NH2)CH3GeLiF were first theoretically studied by density functional theory. Two equilibrium structures, the three-membered ring and the p-complex structures, were located. The three-membered ring structure is more stable both in vacuum and in solvents (ether, THF, and acetone). The Ge–N coordination energies at the B3LYP/6-311+G(d,p) level are 35.8 and 7.9 kJ/mol in the three-membered ring and the p-complex structures, respectively. The insertion reactions with CH3F indicate that germylenoid PhCH2(NH2)CH3GeLiF is more stable than germylene PhCH2(NH2)CH3Ge. The insertion barrier of PhCH2(NH2)CH3GeLiF with CH3F is higher than that of PhCH3CH3GeLiF, indicating that the amine coordination make PhCH2(NH2)CH3GeLiF more stable.  相似文献   

11.
Synthesis and characterization of seven ruthenium(II) and ruthenium(III) complexes of sulphoxide with 2-aminobenzimidazole are reported. Three different formulations exist; [cis-RuCl2(SO)3(2-ABZ)]; [trans-RuCl2(SO)3)(2-ABZ)]; and [trans-RuCl4(SO)(2-ABZ (where SO?=?dimethylsulphoxide(DMSO)/tetramethylenesulphoxide(TMSO); 2-ABZ?=?2-aminobenzimidazole). These complexes are characterized by elemental analysis, conductivity magnetic susceptibility, 1H-NMR, 13C{1H}-NMR and electronic spectroscopy.  相似文献   

12.
Two stereoisomers of cis-[Ru(bpy)(pynp)(CO)Cl]PF6 (bpy = 2,2′-bipyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) were selectively prepared. The pyridyl rings of the pynp ligand in [Ru(bpy)(pynp)(CO)Cl]+ are situated trans and cis, respectively, to the CO ligand. The corresponding CH3CN complex ([Ru(bpy)(pynp)(CO)(CH3CN)]2+) was also prepared by replacement reactions of the chlorido ligand in CH3CN. Using these complexes, ligand-centered redox behavior was studied by electrochemical and spectroelectrochemical techniques. The molecular structures of pynp-containing complexes (two stereoisomers of [Ru(bpy)(pynp)(CO)Cl]PF6 and [Ru(pynp)2(CO)Cl]PF6) were determined by X-ray structure analyses.  相似文献   

13.
The single‐crystal X‐ray structure determinations of the title complexes, cis‐di­chloro‐trans‐di­methyl‐cis‐bis(N‐methyl­pyr­rolidin‐2‐one‐O)­tin(IV), [Sn(CH3)2Cl2(C5H9NO)2], cis‐di­bromo‐trans‐di­methyl‐cis‐bis(N‐methyl­pyrrolidin‐2‐one‐O)tin­(IV), [SnBr2(CH3)2(C5H9NO)2], and cis‐di­iodo‐trans‐di­methyl‐cis‐bis(N‐methyl­pyrrolidin‐2‐one‐O)­tin(IV), [Sn(CH3)2I2(C5H9NO)2], show that those tin complexes in which coordination of the lactam ligand to SnIV is realized via oxygen exhibit a distorted octahedral geometry.  相似文献   

14.
Reactions of SnCl2 with the complexes cis‐[PtCl2(P2)] (P2=dppf (1,1′‐bis(diphenylphosphino)ferrocene), dppp (1,3‐bis(diphenylphosphino)propane=1,1′‐(propane‐1,3‐diyl)bis[1,1‐diphenylphosphine]), dppb (1,4‐bis(diphenylphosphino)butane=1,1′‐(butane‐1,4‐diyl)bis[1,1‐diphenylphosphine]), and dpppe (1,5‐bis(diphenylphosphino)pentane=1,1′‐(pentane‐1,5‐diyl)bis[1,1‐diphenylphosphine])) resulted in the insertion of SnCl2 into the Pt? Cl bond to afford the cis‐[PtCl(SnCl3)(P2)] complexes. However, the reaction of the complexes cis‐[PtCl2(P2)] (P2=dppf, dppm (bis(diphenylphosphino)methane=1,1′‐methylenebis[1,1‐diphenylphosphine]), dppe (1,2‐bis(diphenylphosphino)ethane=1,1′‐(ethane‐1,2‐diyl)bis[1,1‐diphenylphosphine]), dppp, dppb, and dpppe; P=Ph3P and (MeO)3P) with SnX2 (X=Br or I) resulted in the halogen exchange to yield the complexes [PtX2(P2)]. In contrast, treatment of cis‐[PtBr2(dppm)] with SnBr2 resulted in the insertion of SnBr2 into the Pt? Br bond to form cis‐[Pt(SnBr3)2(dppm)], and this product was in equilibrium with the starting complex cis‐[PtBr2(dppm)]. Moreover, the reaction of cis‐[PtCl2(dppb)] with a mixture SnCl2/SnI2 in a 2 : 1 mol ratio resulted in the formation of cis‐[PtI2(dppb)] as a consequence of the selective halogen‐exchange reaction. 31P‐NMR Data for all complexes are reported, and a correlation between the chemical shifts and the coupling constants was established for mono‐ and bis(trichlorostannyl)platinum complexes. The effect of the alkane chain length of the ligand and SnII halide is described.  相似文献   

15.
Two new complexes, [Co2(CH2=C(CH3)CO2)4(phen)2(H2O)2] (1) and [Pb2(CH2=C(CH3)CO2)4(phen)2] (phen = 1,10-phenanthroline) (2), have been synthesized and structurally characterized by single crystal X-ray diffraction methods. There are two cocrystallized conformers of [Co(CH2=C(CH3)CO2)2(phen)(H2O)] in the asymmetric unit of 1 with the Co atoms displaying similar coordination modes. In the asymmetric unit of 2, there exist two crystallographically independent [Pb(CH2=C(CH3)CO2)2(phen)] molecules with the Pb atoms showing completely different coordination geometries. Weak intermolecular interactions such as hydrogen bonding and π–π stacking are responsible for the supramolecular assembly and stabilization of the crystal structures of 1 and 2. The complexes are characterized by elemental analysis, IR spectra, and UV–Vis spectra. The fluorescent properties of 2 are also discussed.  相似文献   

16.
The ligand 2,11-bis(diphenylphosphinomethyl)benzo[c]phenanthrene ( 1 ) has been used to prepare complexes of the type [PtL( 1 )] (L ? C2H4, CH2?CH? CO2Me, PhC?CPh, MeC?CMe, MeO2CC?CCO2Me, (i-Pr)O2CC?CCO2(i-Pr), Ph3P and CO). It is shown that these complexes are less labile than the corresponding species [PtL(Ph3P)2]. The preparation of complexes trans-[PtX(R)(1)] by oxidative addition of RX (RX ? PhCH2Br and Mel) to [Pt(C2H4)(1)] is described. The isolation of [PtO2(CH3)2CO(1)] is also reported.  相似文献   

17.
Novel cis- and trans-bis(imido) uranium disulfonamide derivatives have been prepared from iodide metathesis reactions between two equivalents of K[N(Me)(SO2Ar’)] (Ar’ = 4-Me-C6H4) and U(NtBu)2(I)2(L)x (L = OPPh3, x = 2; Me2bpy, x = 1; Me2bpy = 4,4’-dimethyl-2,2’-bipyridyl). These bis(amide) derivatives serve as useful precursors for the synthesis of the trans-diphenolate complex U(NtBu)2(O-2-tBuC6H4)2(OPPh3)2 (5), cis- and trans-dithiolate complexes U(NtBu)2(SPh)2(L)x (L = OPPh3 (6); Me2bpy (7)), and cis- and trans-dihalide complexes with the general formulas U(NtBu)2(X)2(L)x (X = Cl, L = OPPh3 (8), L = Me2bpy (10); X = Br, L = OPPh3 (9), L = Me2bpy (11)). DFT calculations performed on the trans-dihalide series U(NtBu)2(X)2(L)2 and the UO22+ analogues UO2X2(OPPh3)2 suggest that the uranium centers in the [U(NtBu)2]2+ ions possess more covalent character than analogous UO22+ derivatives but that the U-X bonds in the U(NtBu)2X2L2 complexes possess a more ionic nature.  相似文献   

18.
Diorganotin (IV) complexes SnR2X2 (R = Me, Ph; X = Cl, NCS) form a series of versatile complexes when react with bidentate substituted pyridyl ligands. The reaction of dimethyltin dichloride with 5,5′‐dimethyl‐2,2′‐bipyridine (5,5′‐Me2bpy) resulted in the formation of [SnMe2Cl2(5,5′‐Me2bpy)] ( 1 ). Moreover, the reaction of SnMe2(NSC)2 with 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine (bu2bpy), 1,10‐phenanthroline (phen) and 4,7‐diphenyl‐1,10‐phenanthroline (bphen) affords the hexa‐coordinated complexes [SnMe2(NCS)2(bu2bpy)] ( 2 ), [SnMe2(NCS)2(phen)] ( 3 ) and [SnMe2(NCS)2(bphen)] ( 4 ), respectively. The resulting complexes have been characterized using elemental analysis, IR, multinuclear NMR (1H, 13C, 119Sn) and DEPT‐135° NMR spectroscopy. On the other hand, the reaction of diphenyltin dichloride with 2,2′‐biquinoline (biq) and 4,7‐phenantroline (4,7‐phen) led to the formation of polymeric complexes of [SnPh2Cl2(4,7‐phen)]n ( 5 ) and [SnPh2Cl2(biq)]n ( 6 ). The NMR spectra, however, reveal the ligand lability in solution and suggest a coordination number of 5 . The X‐ray crystal structures of complexes [SnMe2Cl2(5,5′‐Me2bpy)] ( 1 ), [SnMe2(NCS)2(bu2bpy)] ( 2 ) and [SnMe2(NCS)2(bphen)] ( 4 ) have been determined which reveal that the geometry around the tin atom is distorted octahedral with trans‐[SnMe2] configuration. Interestingly, the crystal structure of (H2biq)2[SnPh2Cl4]?2CHCl3 ( 7 ) was characterized by X‐ray crystallography from a chloroform solution of [SnPh2Cl2(biq)]n ( 6 ) indicating the formation of doubly protonated [H2biq]+ and [Ph2SnCl4]2? which are stabilized by a network of hydrogen bonds with a feature of trans‐[SnPh2]. The 3D Hirshfeld surface analysis and 2D fingerprint maps were used for quantitative mapping out of the intermolecular interactions for 1 , 2 , 4 and 7 which show the presence of π‐π and hydrogen bonding interactions which are associated between donor and acceptor atoms (N, S, Cl) in the solid state.  相似文献   

19.
The complex trans,cis‐[RuCl2(PPh3)2(ampi)] (2) was prepared by reaction of RuCl2(PPh3)3 with 2‐aminomethylpiperidine(ampi) (1). [RuCl2(PPh2(CH2)nPPh2)(ampi) (n = 3, 4, 5)] (3–5) were synthesized by displacement of two PPh3 with chelating phosphine ligands. All complexes (2–5) were characterized by 1 H, 13C, 31P NMR, IR and UV‐visible spectroscopy and elemental analysis. They were found to be efficient catalysts for transfer hydrogen reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Reactions of 2,5‐dibromothiophene, 1 , with [Pd2(dba)3]?dba [Pd(dba)2; dba = dibenzylideneacetone] in the presence of N‐donor ligands such as 2,2′‐bipyridine (bpy) and 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine (dtbbpy) give arylpalladium complexes of cis‐[2‐(5‐BrC4H2S)PdBrL2], 2a, b [L2 = bpy ( 2a ), L2 = dtbbpy ( 2b )], and cis‐cis‐L2PdBr[2,5‐(C4H2S‐)PdBr(L2)], 3a, b [L2 = bpy ( 3a ), L2 = dtbbpy ( 3b )]. Treatment of cis complexes 2a, b and 3a, b with CO causes the insertion of CO into the Pd? C bond to give the aroyl derivatives of palladium complexes of cis‐[2‐(5‐BrC4H2S)COPdBrL2], 4a, b [L2 = bpy ( 4a ), L2 = dtbbpy ( 4b )], and cis‐cis‐[(L2)(CO)BrPdC4H2S‐PdBr(CO)(L2)], 5a, b [L2 = bpy ( 5a ) and L2 = dtbbpy ( 5b )], respectively. Treating complexes 2a, b with 1 mole equivalent of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) gave iminoacyl complexes cis‐[2‐(5‐BrC4H2S)C?NXyPdBrL2], 6a, b [L2 = bpy ( 6a ), L2 = dtbbpy ( 6b )], and a 3‐fold excess of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) gave triiminoacyl complexes [2‐(5‐BrC4H2S)(C?NXy)3 PdBr], 7 . Cyclization reactions of 6a, b with 3 mole equivalents of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) or cyclization reaction of 7 with 1 mole equivalent of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) both gave tetraiminoacyl complexes of [2‐(5‐BrC4H2S)(C?NXy)4PdBr], 8 , which was also obtained by the reaction of 1 or 2a, b with a 4‐fold excess of isocyanide XyNC with or without add Pd(dba)2. Similarly, complexes 3a and b were also reacted with 2 mole equivalents of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) to give iminoacyl complexes cis‐cis‐[(L2)(CNXy)BrPdC4H2S‐PdBr(CNXy)(L2)], 10a, b [L2 = bpy ( 10a ), L2 = dtbbpy ( 10b )] and an 8‐fold excess of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) afforded tetraiminoacyl complexes of [2,5‐(C4H2S)(C?NXy)8Pd2Br2], 11 . Complexes 2a, b and 3a, b reacted with TlOTf [(TfO = CF3SO3)] in CH2Cl2 to give 9a, b and 12a, b , respectively, in a moderate yield. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号