首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A novel in-line rheometer, called Rheopac, has been designed and built in order to study the rheological behaviour of starchy products or, more generally, of products sensitive to a thermomechanical treatment. It is based on the principle of a twin channel, using a balance of feed rate between each of them, in order to make local shear rate vary in the measuring section without changing the flow conditions into the extruder. A wide range of shear rate could be reached and measurements were performed more swiftly than with a classical slit die. The viscous behaviour of maize starch was studied by taking into account the influence of the thermomechanical history, which modified the starch degradation and thus led to important variations in the viscosity. Experimental results were satisfactorily compared to previously published models.Nomenclature E activation energy (J · mol–1) - h channel depth (m) - h 1 depth under the piston valve in channel 1 (m) - h 2 depth under the piston valve in channel 2 (m) - K consistency (Pa·s n ) - K 0 reference consistency (Pa·s n ) - L total channel length (m) - L p length of the piston valve (m) - MC moisture content (wet basis) - n power law index - N screw rotation speed (rpm) - P 0 entrance pressure (Pa) - P e pressure at the entry of the piston valve (Pa) - Q 1 flow rate in channel 1 (m3 · s–1) - Q 2 flow rate in channel 2 m3·s–1) - Q T total flow rate (m3 · s–1) - R constant of perfect gas (8.314 J·mol–1·K–1) - SME specific mechanical energy (kWh · t–1) - T temperature (°C) - T a absolute temperature (K) - T b barrel temperature (°C) - T d die temperature (°C) - T p product temperature (°C) - w channel width (m) - W energetical term (J·m–3) - viscosity (Pa · s) - [gh 0] intrinsic viscosity of native starch (ml·g–1) - [] intrinsic viscosity (ml·g–1) - shear rate (s–1) - shear rate in measuring section (s–1) - maximum shear rate (s–1)  相似文献   

2.
This paper presents a study on the deformation of anisotropic fibrous porous media subjected to moistening by water in the liquid phase. The deformation of the medium is studied by applying the concept of effective stress. Given the structure of the medium, the displacement of the solid matrix is not taken into account with respect to the displacement of the liquid phase. The transport equations are derived from the model proposed by Narasimhan. The transport coefficients and the relation between the variation in apparent density and effective stress are obtained by test measurements. A numerical model has been established and applied for studying drip moistening of mineral wool samples capable or incapable of deformation.Nomenclature D mass diffusion coefficient [L2t–1] - e void fraction - g gravity acceleration [Lt–2] - J mass transfer density [ML–2t–1] - K hydraulic conductivity [Lt–1] - K s hydraulic conductivity of the solid phase [Lt–1] - K * hydraulic conductivity of the deformable porous medium [Lt–1] - P pressure of moistening liquid [ML–1 t–2] - S degree of saturation - t time [t] - V speed [Lt–1] - X horizontal coordinate [L] - Z vertical coordinate measured from the bottom of porous medium [L] - z z-coordinate [L] Greek Letters porosity - 1 total hydric potential [L] - g gas density [ML–3] - 1 liquid density [ML–3] - 0 apparent density [ML–3] - s density of the solid phase [ML–3] - density of the moist porous medium [ML–3] - external load [ML–1t–2] - effective stress [ML–1t–2] - bishop's parameter - matrix potential or capillary suction [L] Indices g gas - 1 moistening liquid - p direction perpendicular to fiber planes - s solid matrix - t direction parallel to fiber planes - v pore Exponent * movement of solid particles taken into account  相似文献   

3.
A recent technique of simultaneous particle image velocimetry (PIV) and pulsed shadow technique (PST) measurements, using only one black and white CCD camera, is successfully applied to the study of slug flow. The experimental facility and the operating principle are described. The technique is applied to study the liquid flow pattern around individual Taylor bubbles rising in an aqueous solution of glycerol with a dynamic viscosity of 113×10–3 Pa s. With this technique the optical perturbations found in PIV measurements at the bubble interface are completely solved in the nose and in annular liquid film regions as well as in the rear of the bubble for cases in which the bottom is flat. However, for Taylor bubbles with concave oblate bottoms, some optical distortions appear and are discussed. The measurements achieved a spatial resolution of 0.0022 tube diameters. The results reported show high precision and are in agreement with theoretical and experimental published data.Symbols D internal column diameter (m) - g acceleration due to gravity (m s–2) - l w wake length (m) - Q v liquid volumetric flow rate (m3 s–1) - r radial position (m) - r * radial position of the wake boundary (m) - R internal column radius (m) - U s Taylor bubble velocity (m s–1) - u z axial component of the velocity (m s–1) - u r radial component of the velocity (m s–1) - z distance from the Taylor bubble nose (m) - Z * distance from the Taylor bubble nose for which the annular liquid film stabilizes (m) Dimensionless groups Re Reynolds number ( ) - N f inverse viscosity number ( ) Greek letters liquid film thickness (m) - liquid kinematic viscosity (m2 s–1) - liquid dynamic viscosity (Pa s) - liquid density (kg m–3)  相似文献   

4.
The rheological properties of dense suspensions, of silica, iron (III) oxide and water, were studied over a range of solids concentrations using a viscometer, which was modified so as to prevent settling of the solid components. Over the conditions studied, the material behaved according to power—law flow relationships. As the concentrations of silica and iron(III) oxide were increased, an entropy term in the flow equation was identified which had a silica dependent and an iron (III) oxide dependent component. This was attributed to a tendency to order into some form of structural regularity. A, A, B, C pre-exponential functions (K Pan s–1) - C ox volume fraction iron (III) oxide - Q activation energy (kJ mol–1) - R gas constant (kJ mol–1 K–1) - R v silica/water volume ratio - T temperature (K) - n power-law index - H enthalpy (kJ mol–1) - S entropy change (kJ mol–1 K–1) - shear strain rate (s–1) - shear stress (Pa)  相似文献   

5.
Liquid sheet and film atomization: a comparative experimental study   总被引:1,自引:0,他引:1  
Liquid atomization processes are too complex to allow a purely theoretical study. Therefore experiments are necessary to quantify droplets production. In our problem, the replacement of an original complicated flow by a simpler one, i.e. liquid metal and high gas velocity by water and low air velocity, has led to a relation for the droplet diameter, thanks to dynamical similarity and order of magnitude estimates. Observation of a liquid film disruption development by high speed photography gives some informations about the mechanism of break-up in action. Granulometric measurements by video image analysis have specified the previous dimensionless relation for the mass median diameter. Measurements concern both the film and the sheet atomization, it is shown that the control of the liquid layer thickness is of major importance to control the quality of sprays.List of symbols d droplet diameter (m) - d mm mass median droplet diameter (m) - g acceleration due to the gravity (ms–2) - H g , H l gas slit width, liquid film thickness (m) - dimensionless parameters - Q 1 = H 1 V 1 liquid flow rate (m2s–1) - Reynolds number - T time(s) - V g , V l gas and liquid velocity (m s–1) - W c channel width (m) - Weber number - g , l gas and liquid viscosity (kg m–1 s–1) - g , i gas and liquid density (kg m–3) - surface tension (kg s–2) An abridged version of this paper was presented at the 6th ICLASS (Int. Conf. on Liquid Atomization and Spray Systems), Rouen, France, 18–22 July 1994  相似文献   

6.
Solidification processes involve complex heat and mass transfer phenomena, the modelling of which requires state-of-the art numerical techniques. An efficient and accurate transient numerical method is proposed for the analysis of phase change problems. This method combines both the enthalpy and the enhanced specific heat approaches in incorporating the effects of latent heat released due to phase change. The sensitivity and accuracy of the proposed method to both temporal and spatial discretization is shown together with closed-form solutions and the results from the enhanced specific heat approach. In order to explore the proposed method fully, a non-linear heat release, as is the case for binary alloys, is also examined. The number of operations required for the new transient approach is less than or equal to the enhanced heat capacity method depending on the averaging method adopted. To demonstrate the potential of this new finite-element technique, measurements obtained on operating machines for the casting of zinc, aluminum and steel are compared with the model predictions. The death/birth technique, together with the proper heat-transfer coefficients, were employed in order to model the casting process with minimal error due to the modelling itself.Nomenclature [A] conductance matrix - [B] matrix containing the derivative of the element shape functions - c, C p specific heat (J kg–1°C–1) - effective specific heat (J kg–1°C–1) - f(T) local liquid fraction - f thermal load vector - H enthalpy (J kg–1) - [H] capacitance matrix - h, h r,h c heat transfer coefficient (W m–2°C–1) - K thermal conductivity (W m–1°C–1) - L latent heat of solidification (J kg–1) - l overall length (m) - N i shape functions - Q rate of heat generation per unit volume (J m–3) - q heat flux (W m–2) - R residual temperature (°C) - T temperature (°C) - T s solidus temperature (°C) - T l liquidus temperature (°C) - T pouring pouring temperature (°C) - T top temperature at the top of the mould (°C) - T w temperature of the water spray (°C) - approximated temperature (°C) - T surrounding temperature (°C) - cooling rate (°C/s) - t time (seconds) - x i,x, y, z spatial variables (m) - t time step (s) - x element size (m) - diffusivity (m2s–1) - density (kg m–3) - time marching parameter - n direction cosines of the unit outward normal to the boundary  相似文献   

7.
Zusammenfassung In der vorliegenden Arbeit wird ein neues Rotationsrheometer vorgestellt und über Messungen an zwei Polymethylmethacrylat-Formmassen berichtet. Bei dem Rheometer handelt es sich um ein Couette-Rheometer mit feststehendem Innenzylinder als Meßkörper. Der Meßkörper ist beidseitig eingespannt. In dem geschlossenen Meßraum können die Schmelzen bis zu einem Druck von 500 bar belastet werden.Der zeitliche Verlauf der Schubspannung in den Schmelzen wird in Abhängigkeit von Temperatur und Druck aufgezeichnet.
Summary A new type of rotational rheometer is described, and results for two samples of polymethylmethacrylate are reported. The rheometer consists of a Couette system with fixed inner cylinder, supported at both ends for torque measurements. Pressure may be varied up to 500 bar. Shear stresses have been recorded as a function of time, temperature and pressure.

Nomenklatur C [kp cm–2 s–1] Steigung der Anlaufkurve im Nullpunkt - D [kp cm rad–1] Direktionsmoment - E 0 [kcal mol–1] Aktivierungsenergie der Newtonschen Viskosität - G [kp cm–2] Schubmodul - G [—] Griffith-Zahl - l [mm] Länge des Meßkörpers - p [kp cm–2] Druck - R i [mm] Radius des Innenzylinders - R a [mm] Radius des Außenzylinders - t max [s] Zeit, bei der das Maximum in der Anlaufkurve auftritt - T [°C] Temperatur - 0 [cm2 kp–1] Druckkoeffizient der Newtonschen Viskosität - [s–1] Schergeschwindigkeit - 0 [kp s cm–2] Newtonsche Viskosität - (g cm2] Trägheitsmoment des Meßkörpers - v 0 [s–1] Eigenfrequenz des Meßsystems - max [kp cm–2] maximale Schubspannung - st [kp cm–2] stationäre Schubspannung Mit 7 Abbildungen und 1 Tabelle  相似文献   

8.
The inner part of a neutral atmospheric boundary layer has been simulated in a wind tunnel, using air injection through the wind tunnel floor to thicken the boundary layer. The flow over both a rural area and an urban area has been simulated by adapting the roughness of the wind tunnel floor. Due to the thickening of the boundary layer the scaling factor of atmospheric boundary layer simulation with air injection is considerably smaller than that without air injection. This reduction of the scaling factor is very important for the simulation of atmospheric dispersion problems in a wind tunnel.The time-mean velocity distribution, turbulence intensity, Reynolds stress and turbulence spectra have been measured in the inner part of the wind tunnel boundary layer. The results are in rather good agreement with atmospheric measurements.Nomenclature d Zero plane displacement, m - h Height of roughness elements, m - k Von Kármán's constant - n Frequency of turbulence velocity component, s–1 - S u(n) Energy spectrum for longitudinal turbulence velocity component, m2 s–1 - S v(n) Energy spectrum for lateral turbulence velocity component, m2 s–1 - S w(n) Energy spectrum for vertical turbulence velocity component, m2 s–1 - U o Free stream velocity outside the boundary layer, m s–1 - Time-mean velocity inside the boundary layer, m s–1 - u* Wall-friction velocity, m s–1 - u Longitudinal turbulence intensity, m s–1 - v Lateral turbulence intensity, m s–1 - w Vertical turbulence intensity, m s–1 - Reynolds stress, m2 s–2 - z Height above earth's surface or wind tunnel floor, m - z o Roughness length, m - Thickness of inner part of boundary layer, m - Thickness of boundary layer, m - Kinematic viscosity, m2 s–1  相似文献   

9.
The effect of a pressure wave on the turbulent flow and heat transfer in a rectangular air flow channel has been experimentally studied for fast transients, occurring due to a sudden increase of the main flow by an injection of air through the wall. A fast response measuring technique using a hot film sensor for the heat flux, a hot wire for the velocities and a pressure transducer have been developed. It was found that in the initial part of the transient the heat transfer change is independent of the Reynolds number. For the second part the change in heat transfer depends on thermal boundary layer thickness and thus on the Reynolds number. Results have been compared with a simple numerical turbulent flow and heat transfer model. The main effect on the flow could be well predicted. For the heat transfer a deviation in the initial part of the transient heat transfer has been found. From the turbulence measurements it has been found that a pressure wave does not influence the absolute value of the local turbulent velocity fluctuations. They could be considered to be frozen.Nomenclature A surface area (m2) - D diameter (m) - h heat transfer coefficient (Wm–2 K–1) - p pressure drop (Pa) - P pressure (Pa) - Q heat flow (W) - R tube radius (m) - T bulk temperature (K) - T s surface temperature (K) - t time (s) - u velocity (m/s) - V voltage (V) - y distance from wall (m) - viscosity (N s m–2) - kinematic viscosity (m–2 s–1) - density (kg m–3) - w wall shear stress (N m–2) - Nu Nusselt number - Re Reynolds number  相似文献   

10.
New measurements of the pressure distribution generated by two Newtonian liquids in the Truncated Cone-and-Plate Apparatus are presented, in order to evaluate the exact form of the inertial contribution for a range of Reynolds numbers (Re) fromRe = 140 toRe = 36,000;Re = R 2 /, where and are the liquid density and viscosity respectively,R is the plate radius, and is the angular velocity of the cone. The Walters equation for lowRe, p w = 0.15 2 (r2 – R2), is shown to be in excellent agreement with the measurements up toRe = 1000, provided an appropriate correction for the Newtonian hole pressure is made. Up toRe = 1000, the measured slope is within 1% of the theoretical value of 0.15 given by the Walters equation; as the Reynolds number increases above 1000, the data become increasingly nonlinear inr 2. Other theoretical predictions made especially for largeRe begin to disagree with the data even belowRe = 1000. The application of the experimentally determined additive inertial contribution to measurements of pressure distribution in four dilute polymer solutions is found to reproduce adequately the expected form of the viscoelastic pressure distribution, even at highRe where the Walters equation is not valid. Measurements of a combination of normal-stress differencesN 1 + 2N 2 for polymer solutions involving specific polymer/solvent interaction sites show a difference of 45% with change of solvent, while no difference is observed in solutions of polymers without the interaction sites. The normal-stress ratio —N 2/N 1 for a 5% solution of cis-polybutadiene is 0.24 at a shear rate of 100 s–1, and it appears to approach the zero shear limit of 2/7 given by the Doi-Edwards theory. The Higashitani-Pritchard-Baird-Lodge equation relating the elastic hole pressure to the normal-stress differenceN 1N 2 gives a qualitative agreement betweenN 1N 2 from the TCP Apparatus and the hole pressure from the Stressmeter; the percent difference is 0 at shear stress < 25 Pa, 35% at = 45 Pa, and 18% at the highest = 63 Pa.  相似文献   

11.
Thermal stability of composite superconducting tape subjected to a thermal disturbance is numerically investigated under the effect of a two-dimensional dual-phase-lag heat conduction model. It is found that the dual-phase-lag model predicts a wider stable region as compared to the predictions of the parabolic and the hyperbolic heat conduction models. The effects of different design, geometrical and operating conditions on superconducting tape thermal stability were also studied.a conductor width, (m) - A conductor cross sectional area of, (m2) - As conductor aspect ratio, (a/b) - b conductor thickness, (m) - Bi Biot number - B dimensionless disturbance Intensity - C heat capacity, (J m–3 K–1) - D disturbance energy density, (W m–3) - f volume fraction of the stabilizer in the conductor - g(T) steady capacity of the Ohmic heat source, (W m–3) - gmax Ohmic heat generation with the whole current in the stabilizer, (W m–3) - Gmax dimensionless maximum Joule heating - h convective heat transfer coefficient, (W m–2 K–1) - J current density, (A m–2) - k thermal conductivity of conductor, (W m–1 K–1) - q conduction heat flux vector, (W m–2) - Q dimensionless Joule heating - R relaxation times ratio (T/2q) - t rime, (s) - T temperature, (K) - Tc critical temperature, (K) - Tc1 current sharing temperature, (K) - Ti initial temperature, (K) - To ambient temperature, (K) - x, y co-ordinate defined in Fig. 1, (m) - thermal diffusivity (m2 s–1) - dimensionless time - i dimensionless duration time - dimensionless y-variable - o superconductor dimensionless thickness - dimensionless temperature - c1 dimensionless current sharing temperature - 1 dimensionless maximum temperature - dimensionless disturbance energy - numerical tolerance - x width of conductor subjected to heat disturbances, (m) - y thickness of conductor subjected to heat disturbances, (m) - dimensionless x-variable - o superconductor dimensionless width - stabilizer electrical resistivity, () - q relaxation time of heat flux, (s) - T relaxation time of temperature gradient, (s) - i initial - sc current sharing - max maximum - o ambient  相似文献   

12.
It was shown experimentally in [1, 2] and in a study by E. I. Asinovskii and A. V. Kirillin reported at the Scientific Technical Conference of the High-Temperature Scientific Research Institute held in 1964 that the heat transfer mechanism in a wall-stabilized argon arc was not purely purely conductive at gas temperatures greater than 11 000° K. Asinovskii and Kirillin also showed that radiative energy transfer is the reason why similarity is lost when the current-voltage characteristics are constructed in dimensionless form. The radiation of an argon arc has been studied experimentally by a number of authors [3–5], Dautov [6] calculated an argon arc without allowing for radiation.In this article an argon arc stabilized by the cooled duct walls is calculated with account for radiation using theoretically computed relationships describing the transport properties of argon plasma. A large portion of the radiated energy pertains to spectral lines whose role has been studied by L. M. Biberman. The authors have used I. T. Yakubov's data on argon radiation published in the journal Optics and Spectroscopy. A method of calculation and data on argon plasma radiation are also given in [7].Reference [8] deals with the problem of the role of radiation in an arc burning in nitrogen. In particular, the above-mentioned loss of similarity follows from the results of this work. However, the relationships used in this article to describe the transport properties of nitrogen plasma were obtained experimentally in [9].Notation r0 arc radius (cm) - r variablesradius (cm) - T temperature (°K) - heat transfer coefficient (ergcm–1sec–1deg–1) - E electric field intensity (g1/2cm–1/2sec–1) - electrical conductivity (sec–1) - q1 heat flux density due to conduction - q2 heat flux density due to radiation - u divergence of radiative energy flux density in the transparent part of the spectrum (ergcm–3sec–1) - u2 same for part of the spectrum where reabsorption is taken taken into account - m0 atomic mass - me electronic mass - Stefan-Boltzmann constant - h Planck constant - k Boltzmann constant - e electronic charge - p pressure - degree of ionization - Ne electron concentration (cm–3) - n0 neutral atom concentration - Q0e electron-neutral collision cross section - Qie electron-ion collision cross section (cm2) - 0 line center frequency (sec–1) - + line halfwidth (distance from line center to contour for ) due to effects giving dispersion contour - k v absorption coefficient (cm–1) - energy radiated by a hemispherical volume - emissivity of hemispherical volume - radius of hemispherical volume - S line intensity The authorS thank I. T. Yakubov for allowing them to use his data on arc plasma radiation.  相似文献   

13.
The rheological properties of rennet-induced skim milk gels were determined by two methods, i.e., via stress relaxation and dynamic tests. The stress relaxation modulusG c (t) was calculated from the dynamic moduliG andG by using a simple approximation formula and by means of a more complex procedure, via calculation of the relaxation spectrum. Either calculation method gave the same results forG c (t). The magnitude of the relaxation modulus obtained from the stress relaxation experiments was 10% to 20% lower than that calculated from the dynamic tests.Rennet-induced skim milk gels did not show an equilibrium modulus. An increase in temperature in the range from 20° to 35 °C resulted in lower moduli at a given time scale and faster relaxation. Dynamic measurements were also performed on acid-induced skim milk gels at various temperatures andG c (t) was calculated. The moduli of the acid-induced gels were higher than those of the rennet-induced gels and a kind of permanent network seemed to exist, also at higher temperatures. G storage shear modulus,N·m–2; - G loss shear modulus,N·m–2; - G c calculated storage shear modulus,N·m–2; - G c calculated loss shear modulus,N·m–2; - G e equilibrium shear modulus,N·m–2; - G ec calculated equilibrium shear modulus,N·m–2; - G(t) relaxation shear modulus,N·m–2; - G c (t) calculated relaxation shear modulus,N·m–2; - G *(t) pseudo relaxation shear modulus,N·m–2; - H relaxation spectrum,N·m–2; - t time,s; - relaxation time,s; - angular frequency, rad·s–1. Partly presented at the Conference on Rheology of Food, Pharmaceutical and Biological Materials, Warwick, UK, September 13–15, 1989 [33].  相似文献   

14.
A. Kaye 《Rheologica Acta》1969,8(2):244-244
An apparatus designed to measure the dynamic viscoelastic response of polymer melts is described. Dynamic elasticity (G) and viscosity () can be measured over a frequency range 10–2-10–3 Hz and at temperatures up to 350 °C. The sample under test is held in a cone and plate assembly. A small strain is introduced by driving the plate with a variable speed synchronous motor and off-centre cam at low frequencies and by an electromagnetic vibrator at high frequencies. The amplitudes of the cone and plate are detected using the optical lever principle and photocell strips. The phase difference between the cone and plate is measured from a recorder trace at low frequencies and by direct reading on a meter at high frequencies.Results are described of measurements on silicone fluids, and on commercial grades of polyethylene with different molecular weight distributions and degrees of branching.A discussion is given of the correlation between the dynamic viscosity measurements and those taken under steady-flow conditions.Paper presented at the Conference on Experimental Rheology, University of Bradford, April 17–19, 1968. — Original paper published in J. Sci. Instruments Series 2,1, 1102–1112 (1968).  相似文献   

15.
Landslide generated impulse waves. 2. Hydrodynamic impact craters   总被引:4,自引:0,他引:4  
Landslide generated impulse waves were investigated in a two-dimensional physical laboratory model based on the generalized Froude similarity. Digital particle image velocimetry (PIV) was applied to the landslide impact and wave generation. Areas of interest up to 0.8 m by 0.8 m were investigated. PIV provided instantaneous velocity vector fields in a large area of interest and gave insight into the kinematics of the wave generation process. Differential estimates such as vorticity, divergence, and elongational and shear strain were extracted from the velocity vector fields. At high impact velocities flow separation occurred on the slide shoulder resulting in a hydrodynamic impact crater, whereas at low impact velocities no flow detachment was observed. The hydrodynamic impact craters may be distinguished into outward and backward collapsing impact craters. The maximum crater volume, which corresponds to the water displacement volume, exceeded the landslide volume by up to an order of magnitude. The water displacement caused by the landslide generated the first wave crest and the collapse of the air cavity followed by a run-up along the slide ramp issued the second wave crest. The extracted water displacement curves may replace the complex wave generation process in numerical models. The water displacement and displacement rate were described by multiple regressions of the following three dimensionless quantities: the slide Froude number, the relative slide volume, and the relative slide thickness. The slide Froude number was identified as the dominant parameter.List of symbols a wave amplitude (L) - b slide width (L) - c wave celerity (LT–1) - d g granulate grain diameter (L) - d p seeding particle diameter (L) - F slide Froude number - g gravitational acceleration (LT–2) - h stillwater depth (L) - H wave height (L) - l s slide length (L) - L wave length (L) - M magnification - m s slide mass (M) - n por slide porosity - Q d water displacement rate (L3) - Q D maximum water displacement rate (L3) - Q s maximum slide displacement rate - s slide thickness (L) - S relative slide thickness - t time after impact (T) - t D time of maximum water displacement volume (L3) - t qD time of maximum water displacement rate (L3) - t si slide impact duration (T) - t sd duration of subaqueous slide motion (T) - T wave period (T) - v velocity (LT–1) - v p particle velocity (LT–1) - v px streamwise horizontal component of particle velocity (LT–1) - v pz vertical component of particle velocity (LT–1) - v s slide centroid velocity at impact (LT–1) - V dimensionless slide volume - V d water displacement volume (L3) - V D maximum water displacement volume (L3) - V s slide volume (L3) - x streamwise coordinate (L) - z vertical coordinate (L) - slide impact angle (°) - bed friction angle (°) - x mean particle image x-displacement in interrogation window (L) - x random displacement x error (L) - tot total random velocity v error (LT–1) - xx streamwise horizontal elongational strain component (1/T) - xz shear strain component (1/T) - zx shear strain component (1/T) - zz vertical elongational strain component (1/T) - water surface displacement (L) - density (ML–3) - g granulate density (ML–3) - p particle density (ML–3) - s mean slide density (ML–3) - w water density (ML–3) - granulate internal friction angle (°) - y vorticity vector component (out-of-plane) (1/T)  相似文献   

16.
In order to develop criteria for the physical evaluation of wood for soundboards of musical instruments, measurements were made of dynamic Young's modulusE, static Young's modulusE, internal frictionQ –1 in longitudinal direction, and specific gravity for numerous species of broad-leaved wood. From the results obtained, including those of our previous paper on coniferous wood [1], it was found that the suitability of wood for soundboards could be evaluated by the quantity ofQ –1/(E/), and that there were very high correlations betweenQ –1/(E/) andE/, and betweenE andE, regardless of wood species. Consequently, it becomes possible to select practically any wood suitable for soundboards by using the value ofE/, which can be measured easily, and it was derived that the relation betweenE/ andQ –1 of wood could be expressed by an exponential equation regardless of wood species.  相似文献   

17.
An alternate constitutive formulation for visco-elastic materials, with particular emphasis on macromolecular viscoelastic fluids, is presented by generalizing Maxwell's idealized separation of elastic and relaxation mechanisms. The notion ofrelative rate of change of elastic stress is identified, abstracted, and formulated with the help of the established theory of finitely elastic isotropic materials. This given a local rate-type constitutive relation for an elastic mechanism in a simple material.For the simplest class of viscoelastic polymer melts, the notion of rate of change of elastic stress and its damped accumulation is identified and formulated. Under conditions of moderate strain rates, this scheme implies the reliable K-BKZ model for a class of polymer melts. An obvious extension generalizes the remaining classical spring-dashpot models. I Set of second-order tensors.A I is identified with a 3 × 3 matrix in a Cartesian co-ordinate system - I sym Set of symmetric second order tensors - Q Orthogonal tensor, i.e.Q T=Q –1. - Symbol for the value of the functional H:X I sym, whereX is the set of piecewise continuous and differentiable strain historiesF to : [t 0,t] I Other functionals, unless otherwise specified, should be interpreted in a similar manner.  相似文献   

18.
Zusammenfassung Aus Kriechmessungen an Zementstein wurden mit Hilfe einer elektronischen Rechenanlage die Parameter der früher abgeleiteten Kriechgleichung für zwei Wasser/Zement-VerhÄltnisse bestimmt. Damit lÄßt sich die Aktivierungsenergie bestimmen. Für Zementstein mitW/Z = 0,3 bzw.W/Z = 0,65 findet man nach einer Belastungsdauer von 1000 StundenQ = 2,7 kcal/ Mol bzw. 2,3 kcal/Mol. Diese Werte stimmen gut mit den in der Literatur zu findenden Angaben überein. Die Verminderung der Aktivierungsenergie in Richtung der angreifenden Kraft betrÄgt für Zementstein mitW/Z = 0,3 bzw.W/Z = 0,65 ungefÄhr 1 kg–1 bzw. 2kg–1
Summary The parameters in the equation for creep velocity as a function of time were calculated by means of a computer. The calculation is based on experiments on cement stone. The activation energy was determined. After applying a constant load for 1000 h the activation energy was found to beQ = 2.7 kcal/Mol andQ = 2.3 kcal/Mol in cement stone with a water/cement-ratio of 0.3 and 0.65 respectively. These values are in good agreement with the results of other papers. The activation energy in the direction of the external applied load is decreased by an amount of approximately 1 kg–1 and 2 kg–1 for cement stone with a water/cement-ratio of 0.3 and 0.65 respectively.


Herr Prof. Dr. Dr.H. Rüsch förderte die Arbeit stets durch großes Interesse und durch interessante Anregungen. Der Deutschen Forschungsgemeinschaft danken wir für die Bereitstellung von Mitteln.  相似文献   

19.
Summary The rheological behaviour of aqueous solutions of Separan AP-30 and Polyox WSR-301 in a concentration range of 10–10000 wppm is investigated by means of a cone-and-plate rheogoniometer. The relation between the shear stress and the shear rate is for lower shear rates characterized by a timet 0, which is concentration dependent. Both polymers show for 4000 s–1 < < 10000 s–1 a behaviour similar to that of a Bingham material, characterized by a dynamic viscosity 0 and an apparent yield stress 0, which also depend on the concentration. The inertial forces are measured for water and some other Newtonian liquids. An explanation is given why the theoretical model developed for these forces does not match the experimental values; the shape of the liquid surface is shear rate dependent. To obtain the first normal stress difference, we have to correct for these inertial forces, the surface tension and the buoyancy. The normal forces, measured for Separan AP-30, appear to be a linear function of the shear rate for 350 s–1 < < 3300 s–1.
Zusammenfassung Das rheologische Verhalten wäßriger Polymerlösungen von Separan AP-30 und Polyox WSR-301 wird in einem Konzentrationsgebiet von 10–10000 wppm in einem Kegel-Platte-Rheogoniometer untersucht. Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit wird für niedrige Schergeschwindigkeiten durch eine konzentrationsabhängige Zeitt 0 gekennzeichnet. Für Schergeschwindigkeiten 4000 s–1 < < 10000 s–1 zeigen beide Polymere ein genähert binghamsches Verhalten, gekennzeichnet durch eine dynamische Viskosität 0 und eine scheinbare Fließgrenze 0, welche ebenfalls konzentrationsabhängig sind. Die Trägheitskräfte werden für Wasser und einige newtonsche Öle bestimmt. Die Abweichung der experimentellen Ergebnisse vom theoretischen Modell wird durch die Abhängigkeit der Gestalt der Flüssigkeitsoberfläche von der Schergeschwindigkeit erklärt. Um die Werte der ersten Normalspannungsdifferenz zu erhalten, muß man bezüglich der Trägheitskräfte, der Oberflächenspannung und der Auftriebskräfte korrigieren. Die Normalspannungen für Separan AP-30, gemessen für 350 s–1 < < 3300 s–1, zeigen eine lineare Abhängigkeit von der Schergeschwindigkeit.

c concentration (wppm) - g acceleration of gravity (ms–2) - K force (N) - K b buoyant force (N) - K c force, acting on the cone (N) - K 0 dimensional constant def. by eq. [24] (N) - K s force, def. by eq. [22] (N) - M dimensional constant def. by eq. [24] (Ns) - P s pressure def. by eq. [17] (Nm–2) - P 0 average pressure in the liquid atr = 0 (Nm–2) - P R average pressure in the liquid atr = R (Nm–2) - r 1,r 2 radii of curved liquid surface (m) - R platen radius (m) - R w radius of wetted platen area (m) - S x standard deviation ofx - t 0 characteristic time def. by eq. [1] (s) - T temperature (°C) - V volume of the submerged part of the cone (m3) - v tangential velocity of liquid (ms–1) - x distance (m) - angle (rad) - 0 cone angle (rad) - calibration constant (Nm–3) - shear rate (s–1) - dynamic viscosity (mPa · s) - 0 viscosity def. by eq. [1] (mPa · s) - contact angle (rad) - density (kgm–3) - static surface tension (Nm–1) - shear stress (Nm–2) - 0 yield stress def. by eq. [1] (Nm–2) - c, p angular velocity (c = cone,p = plate) (s–1) With 8 figures and 3 tables  相似文献   

20.
The flow behaviour of various polymer solutions of non-hydrolyzed polyacrylamide, hydrolyzed polyacrylamide, polyox and Xanthan was investigated in a plexiglass column having a succession of enlargements and constrictions, and compared with the flow behaviour and mechanical degradation of a solution of non-hydrolyzed polyacrylamide in a packed column of non-consolidated sand. The flow behaviour of this solution was found to be very similar in both the sand pack and plexiglass pore.Apart from the Xanthan solution, all other polymer solutions showed a viscoelastic behaviour in the plexiglass pore. The onset of viscoelastic behaviour, which has previously been defined using the shear rate ( ), stretch rate ( s ) and Ellis number (E 1), could be more precisely evaluated using a modified stretch rate (S G). The pressure losses across the plexiglass pore for different polymer solutions of the same type were found to follow a unique curve provided the suggested group (S G) was used, a situation which was not achieved with the other rheological parameters.The multipass mechanical degradation of the non-hydrolized polyacrylamide was tested through the sand pack against the suggested group (S G) and Maerker's group (M a). It was found that the loss of the solution viscoelasticity due to multipass mechanical degradation was better represented usingS G thanM a. A cross-sectional area (cm2) - C * critical concentration of polymer (ppm) - d plexiglass pore enlargement diameter - D average sand grain diameter (cm) - e equivalent width for the plexiglass pore - E 1 Ellis number (a Deborah number) - F R resistance factor - F Ri resistance factor at the first pass - h height of the flow path of the plexiglass pore - K power-law constant - K h,K w effective permeability to hydrocarbon and water, respectively (10–8 cm2) - M a Maerker's group for a given porosity (s–1) - M ai value ofM a at the first pass - N D Deborah number - n power-law index - Q flow rate (cm3/s) - R capillary radius (cm) - R g radius of gyration - S G suggested group of rheological parameters representing a modified maximum stretch rate (s–1) - S Gi value ofS G at the first pass - T R,t characteristic time for the fluid (s) - t s residence time (s) - V 0 superficial velocity (cm/s) - V mean velocity of flow through a porous medium (cm/s) - average axial velocity in the enlargement section of the plexiglass pore (cm/s) - V 1,V 2 maximum velocity at a plexiglass enlargement neck and centre - [] intrincis viscosity - viscosity (mPa s) - r relative viscosity (ratio of the viscosity of the polymer solution to that of the solvent) - shear rate (s–1) - s stretch rate (s–1) - characteristic time for the polymer solution (s)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号