首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New lead(II)‐saccharin complexes, [Pb(sac)2(pym)] (1) and [Pb(sac)2(pydm)] (2) (sac = saccharinate anion; pym = 2‐pyridylmethanol; pydm = pyridine‐2, 6‐dimethanol) were synthesized and characterized by IR spectroscopy and single crystal X‐ray diffractometry. Complex 1 crystallizes in the monoclinic P21/c space group with Z = 4, while the crystals of complex 2 are extremely X‐ray sensitive and decompose by the X‐ray beam within one day. Pym and pydm act as bi‐ and tridentate ligands, respectively. Most important feature of the complexes is non‐equivalent coordination of the sac ligands to the lead(II) atom. In the complex 1 , the sac ligands coordinate to the lead(II) ion in two distinct manners. One sac ligand behaves as a bridge between the lead(II) atoms through its N and carbonyl O atoms, whereas the other sac ligand acts as a bidentate chelating ligand through its N and carbonyl O atoms which is bicoordinating and also bridges the metal atoms to achieve the seven‐coordination. The structure is built up of three‐dimensional chains formed by the bridging of the PbN3O2 units and also held intermolecular hydrogen bonds. The IR spectra of the complexes were discussed in detail.  相似文献   

2.
A complex with eight‐coordinate lead(II ) atom and saccharinate (sac) and 2‐aminomethylpyridine ligands was characterized by IR, elemental analysis and X‐ray crystallography. The lead(II ) complex crystallizes in the monoclinic crystal system with space group P21/c. The single crystal X‐ray analysis shows that the complex is a coordination polymer, [Pb(ampy)(μ‐sac)2]n, in which the lead(II ) ions have a highly distorted bicapped trigonal antiprism coordination. Lead(II ) ions are bridged by carboxyl groups of sac forming one‐dimensional linear chains, running parallel to the a axis. The intrachain Pb···Pb distances are 4.4490(3) and 4.4679(3)Å. The individual chains are connected by N—H···Osulfonyl and Campy—H···Osulfonyl type hydrogen bonds, resulting in a three‐dimensional network. The sac ligand acts as bidentate and bridging ligand, while ampy behaves as an N, N′ donor. The IR spectra of the lead(II ) complex are discussed in detail.  相似文献   

3.
A new mercury(II) complex of 1,2‐bis(4‐pyridyle)ethene (bpe) with anionic acetate and thiocyanate ligands has been synthesized and characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy. The single crystal X‐ray analysis shows that the complex is a two‐dimensional polymer with simultaneously bridging 1,2‐bis(4‐pyridyle)ethane, acetate and thiocyanate ligands and basic repeating dimeric [Hg2(μ‐bpe)(μ‐OAc)2(μ‐SCN)2] units. The two‐dimensional system forms a three‐dimensional network by packing via ππ stacking interactions.  相似文献   

4.
The single crystal X‐ray data of a mixed anions complex of PbII with 1,10‐Phenantroline, [Pb(phen)(O2CCH3)‐ (O2NO)], shows the complex to be polymeric as a result of acetate ligand bridging. The Pb atom has an asymmetrical eightfold coordination of two nitrogen atoms of the 1,10‐phenanthroline ligand and six oxygen atoms of the nitrate and acetate anions. The arrangement of the 1,10‐phenantroline ligand, acetate and nitrate anions suggest a gap in the coordination around the PbII ion, occupied possibly by a stereoactive lone pair of electrons on lead(II) where the coordination around the lead atoms is hemidirected. There is a π‐π stacking interaction between the parallel aromatic rings of an adjacent chain in the compound which might help to increase the ‘gap' in the coordination around the PbII ion.  相似文献   

5.
In the title compound, [Pb(C6H4NO2)(N3)(H2O)]n, the Pb ion is seven‐coordinated by three N atoms from three azide ligands, two O atoms from two isonicotinate (inic) ligands and two O atoms from two coordinated water molecules, forming a distorted monocapped triangular prismatic coordination geometry. Each azide ligand bridges three PbII ions in a μ1,1,3 coordination mode to form a two‐dimensional three‐connected 63 topology network extending in the bc plane. The carboxylate group of the inic unit and the aqua ligand act as coligands to bridge PbII ions. Adjacent two‐dimensional layers are connected by hydrogen‐bonding interactions between the isonicotinate N atom and the water molecule, resulting in an extended three‐dimensional network. The title complex is the first reported coordination polymer involving a p‐block metal, an azide and a carboxylate.  相似文献   

6.
Two new coordination polymers of PbII complexes with bridging 4,4′‐[(1E)‐ethane‐1,2‐diyl]bis[pyridine] (ebp), thiocyanato, and acetato ligands, [Pb(μ‐SCN)2(μ‐ebp)1.5]n ( 1 ) and {[Pb(μ‐OAc)(μ‐ebp)](ClO4)}n ( 2 ), were synthesized and characterized by elemental analysis, FT‐IR, 1H‐ and 13C‐NMR, thermal analysis, and single‐crystal X‐ray diffraction. In 1 , the Pb2+ ions are doubly bridged by both the ebp and the SCN ligands into a two‐dimensional polymeric network. The seven‐coordinate geometry around the Pb2+ ion in 1 is a distorted monocapped trigonal prism, in which the Pb2+ ions have a less‐common holodirected geometry. In 2 , the Pb2+ ions are bridged by AcO ligands forming linear chains, which are also further bridged by the neutral ebp ligands into a two‐dimensional polymeric framework. The Pb2+ ions have a five‐coordinate geometry with two N‐atoms from two ebp ligands and three O‐atoms of AcO. Although ClO acts as a counter‐ion, it also makes weak interactions with the Pb2+ center. The arrangement of the ligands in 2 exhibits hemidirected geometry, and the coordination gap around the Pb2+ ion is possibly occupied by a configurationally active lone pair of electrons.  相似文献   

7.
A new one‐dimensional coordination polymer, catena‐poly[[acetatohexaaqua{μ4‐2,6‐bis[bis(carboxylatomethyl)aminomethyl]‐4‐methylphenolato}trizinc(II)] octahydrate], [Zn3(C17H17N2O9)(C2H3O2)(H2O)6]·8H2O, is a trinuclear complex consisting of three zinc centers joined by a phenolate bridge and Zn(H2O)4 units. In each complex polymer unit, the three Zn atoms have different coordination modes. Of the two phenolate‐bridged Zn ions, one adopts a distorted octahedral coordination composed of two carboxylate ligands, one tertiary N atom, two water molecules and the bridging phenolate ligand, while the other adopts a pyramidal geometry composed of two carboxylate ligands, one tertiary N atom from another coordination arm, one acetate anion as the counter‐anion and the bridging phenolate ligand. The third type of Zn centre is represented by two independent Zn atoms lying on inversion centres. They both have an octahedral coordination consisting of four O atoms from four water molecules and two acetate carbonyl O atoms from the ligand. The latter Zn atoms join the above‐mentioned binuclear complex units through O atoms of the carboxylate groups into an infinite chain. Neighboring aromatic rings are distributed above and below the chain in an alternating manner. Between the coordination chains, the Zn...Zn separations are 5.750 (4) and 6.806 (4) Å. The whole structure is stabilized by hydrogen bonds formed mainly by solvent water molecules.  相似文献   

8.
In the title complex, [Zn(C8H3NO6)(H2O)3]n, the two carboxylate groups of the 4‐nitrophthalate dianion ligands have monodentate and 1,3‐bridging modes, and Zn atoms are interconnected by three O atoms from the two carboxylate groups into a zigzag one‐dimensional chain along the b‐axis direction. The Zn atom shows distorted octahedral coordination as it is bonded to three O atoms from carboxylate groups of three 4‐nitrophthalate ligands and to three O atoms of three non‐equivalent coordinated water molecules. The one‐dimensional chains are aggregated into two‐dimensional layers through inter‐chain hydrogen bonding. The whole three‐dimensional structure is further maintained and stabilized by inter‐layer hydrogen bonds.  相似文献   

9.
The single crystal X‐ray analysis of a novel thiophene‐2,5‐dicarboxylic acid (H2Tda) Manganese(II) coordination polymer, {Mn23‐Tda)2(μ‐H2O)(H2O)2(bipy)]·DMF}n, shows two different types of Mn2+‐ions with environment of Mn1O6 and Mn2O4N2, and the complex is a two‐dimensional polymer as a result of bridging (Tda)2? ligands and by connecting the carboxylate‐ and water‐bridged {Mn2(μ‐Tda)2(μ‐H2O)} nodes.  相似文献   

10.
A coordination polymer [Ba(pcmb)(H2O)2.5] ( 1 ) was obtained by self‐assembly of the corresponding metal carbonate with a flexible ligand, p‐(carboxyl‐methyloxy)‐benzenecarboxylic acid (H2pcmb), and its structure was determined by single‐crystal X‐ray diffraction studies. The result revealed that complex 1 has a three‐dimensional structure, in which the barium(II) atom takes a distorted eight‐coordinate bicapped anti‐prism arrangement. The pcmb2– anion acts as a μ4‐bridge ligand, in which carboxylate groups adopt monodentate and μ3η2:η1‐bridging two different coordination models to generate a three‐dimensional network structure. The luminescence property and thermal stability of 1 were investigated.  相似文献   

11.
A new coordination polymer (CP), namely poly[(μ‐4,4′‐bipyridine)(μ3‐3,4′‐oxydibenzoato)cobalt(II)], [Co(C14H8O5)(C10H8N2)]n or [Co(3,4′‐obb)(4,4′‐bipy)]n ( 1 ), was prepared by the self‐assembly of Co(NO3)2·6H2O with the rarely used 3,4′‐oxydibenzoic acid (3,4′‐obbH2) ligand and 4,4′‐bipyridine (4,4′‐bipy) under solvothermal conditions, and has been structurally characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray crystallography and powder X‐ray diffraction (PXRD). Single‐crystal X‐ray diffraction reveals that each CoII ion is six‐coordinated by four O atoms from three 3,4′‐obb2? ligands, of which two function as monodentate ligands and the other as a bidentate ligand, and by two N atoms from bridging 4,4′‐bipy ligands, thereby forming a distorted octahedral CoN2O4 coordination geometry. Adjacent crystallographically equivalent CoII ions are bridged by the O atoms of 3,4′‐obb2? ligands, affording an eight‐membered Co2O4C2 ring which is further extended into a two‐dimensional [Co(3,4′‐obb)]n sheet along the ab plane via 3,4′‐obb2? functioning as a bidentate bridging ligand. The planes are interlinked into a three‐dimensional [Co(3,4′‐obb)(4,4′‐bipy)]n network by 4,4′‐bipy ligands acting as pillars along the c axis. Magnetic investigations on CP 1 disclose an antiferromagnetic coupling within the dimeric Co2 unit and a metamagnetic behaviour at low temperature resulting from intermolecular π–π interactions between the parallel 4,4′‐bipy ligands.  相似文献   

12.
The coordination mode of the dimethylmalonate ligand in the two title CuII complexes, {[Cu(C5H3O4)(H2O)]·H2O}n, (I), and [Cu(C5H3O4)(H2O)]n, (II), is the same, with chelated six‐membered, bis‐monodentate and bridging bonding modes. However, the coordination environment of the CuII atoms, the connectivity of their metal–organic frameworks and their hydrogen‐bonding interactions are different. Complex (I) has a perfect square‐pyramidal CuII environment with the aqua ligand in the apical position, and only one type of square grid consisting of CuII atoms linked via carboxylate bridges to three dimethylmalonate ligands, with weak hydrogen‐bond interactions within and between its two‐dimensional layers. Complex (II) has a coordination geometry that is closer to square pyramidal than trigonal bipyramidal for its CuII atoms with the aqua ligand now in the basal plane. Its two‐dimensional layer structure comprises two alternating grids, which involve two and four different dimethylmalonate anions, respectively. There are strong hydrogen bonds only within its layers.  相似文献   

13.
In the title coordination polymer, [Zn2(C14H8N2O4)2(C12H10N2)]n, the asymmetric unit contains one ZnII cation, two halves of 2,2′‐(diazene‐1,2‐diyl)dibenzoate anions (denoted L2−) and half of a 1,2‐bis(pyridin‐4‐yl)ethene ligand (denoted bpe). The three ligands lie across crystallographic inversion centres. Each ZnII centre is four‐coordinated by three O atoms of bridging carboxylate groups from three L2− ligands and by one N atom from a bpe ligand, forming a tetrahedral coordination geometry. Two ZnII atoms are bridged by two carboxylate groups of L2− ligands, generating a [Zn2(CO2)2] ring. Each loop serves as a fourfold node, which links its four equivalent nodes via the sharing of four L2− ligands to form a two‐dimensional [Zn2L4]n net. These nets are separated by bpe ligands acting as spacers, producing a three‐dimensional framework with a 4664 topology. Powder X‐ray diffraction and solid‐state photoluminescence were also measured.  相似文献   

14.
The 1:2 adduct lead(II) complexes with 1, 10‐phenanthroline (phen) containing three different anions, [Pb(phen)2(CH3COO)X] (X=NCS, NO3 and ClO4), have been synthesized and characterized by CHN elemental analysis, IR‐, 1H‐ and 13C NMR spectroscopy. The structure of [Pb(phen)2(CH3COO)(ClO4)] was determined by single crystal X‐ray analysis. The Pb atom of the monomeric complex is coordinated by four nitrogen atoms of two 1, 10‐phenanthroline ligands and two oxygen atoms of the acetate ligand to form an irregular octahedron. The arrangement of the 1, 10‐phenanthroline and acetate ligands, exhibits a coordination gap around the PbII ion, possibly occupied by a stereochemical electron active lone pair on lead(II), which results in a hemidirected lead compound. The π‐π stacking interaction between the parallel aromatic rings may help to increase the coordination ‘gap’ around the PbII ion.  相似文献   

15.
The structure of [Co2(μ‐OH)2(μ‐OAc)(OAc)2(dipyam)2]AcO · EtOH ( 1 ) has been determined by single‐crystal X‐ray analysis. The cationic complex may be described as a “di(μ‐hydroxo)(μ‐acetato)dicobalt(III)” core with chelating 2, 2′‐dipyridylamine and monodentate acetate ligands. The coordination polyhedron around each cobalt atom is a distorted octahedral. The dimers are linked in the crystal by N‐H···Oionic AcO and C‐H···Omonodentate AcO hydrogen bonds. Spectroscopic data are also presented.  相似文献   

16.
A novel 3D polymeric heteropolynuclear sodium(I) lead(II) complex containing different ligands, [NaPb(ClO4)(en)(NO2)2] was synthesized and characterized by elemental analysis and IR, and 1H‐, 13C‐, and 207Pb‐NMR spectroscopy. The single‐crystal X‐ray data of [NaPb(ClO4)(en)(NO2)2]n established that the complex is a three‐dimensional polymer, [(en)Pb(μ3‐ONO)2Na(μ3‐ONO)2Na(μ‐O2ClO2)Na]n. The Pb and Na atoms have four‐ and eight‐coordinate geometry, respectively. The lone pair of electrons at the PbII atom is ‘stereochemically active’.  相似文献   

17.
In the title coordination polymer, {[Cd(C6H8O4S)(C13H14N2)]·H2O}n, the CdII atom displays a distorted octahedral coordination, formed by three carboxylate O atoms and one S atom from three different 3,3′‐thiodipropionate ligands, and two N atoms from two different 4,4′‐(propane‐1,3‐diyl)dipyridine ligands. The CdII centres are bridged through carboxylate O atoms of 3,3′‐thiodipropionate ligands and through N atoms of 4,4′‐(propane‐1,3‐diyl)dipyridine ligands to form two different one‐dimensional chains, which intersect to form a two‐dimensional layer. These two‐dimensional layers are linked by S atoms of 3,3′‐thiodipropionate ligands from adjacent layers to form a three‐dimensional network.  相似文献   

18.
Zinc(II) carboxylates with O‐, S‐ and N‐donor ligands are interesting for their structural features, as well as for their antibacterial and antifungal activities. The one‐dimensional zinc(II) coordination complex catena‐poly[[bis(2,4‐dichlorobenzoato‐κO)zinc(II)]‐μ‐isonicotinamide‐κ2N1:O], [Zn(C7H3Cl2O2)2(C6H6N2O)]n, has been prepared and characterized by IR spectroscopy, single‐crystal X‐ray analysis and thermal analysis. The tetrahedral ZnO3N coordination about the ZnII cation is built up by the N atom of the pyridine ring, an O atom of the carbonyl group of the isonicotinamide ligand and two O atoms of two dichlorobenzoate ligands. Isonicotinamide serves as a bridge between tetrahedra, with a Zn...Zn distance of 8.8161 (7) Å. Additionally, π–π interactions between the planar benzene rings contribute to the stabilization of the extended structure. The structure is also stabilized by intermolecular hydrogen bonds between the amino and carboxylate groups of the ligands, forming a two‐dimensional network. During thermal decomposition of the complex, isonicotinamide, dichlorobenzene and carbon dioxide were evolved. The final solid product of the thermal decomposition heated up to 1173 K was metallic zinc.  相似文献   

19.
The one‐dimensional coordination polymer catena‐poly[diaqua(sulfato‐κO)copper(II)]‐μ2‐glycine‐κ2O:O′], [Cu(SO4)(C2H5NO2)(H2O)2]n, (I), was synthesized by slow evaporation under vacuum of a saturated aqueous equimolar mixture of copper(II) sulfate and glycine. On heating the same blue crystal of this complex to 435 K in an oven, its aspect changed to a very pale blue and crystal structure analysis indicated that it had transformed into the two‐dimensional coordination polymer poly[(μ2‐glycine‐κ2O:O′)(μ4‐sulfato‐κ4O:O′:O′′:O′′)copper(II)], [Cu(SO4)(C2H5NO2)]n, (II). In (I), the CuII cation has a pentacoordinate square‐pyramidal coordination environment. It is coordinated by two water molecules and two O atoms of bridging glycine carboxylate groups in the basal plane, and by a sulfate O atom in the apical position. In complex (II), the CuII cation has an octahedral coordination environment. It is coordinated by four sulfate O atoms, one of which bridges two CuII cations, and two O atoms of bridging glycine carboxylate groups. In the crystal structure of (I), the one‐dimensional polymers, extending along [001], are linked via N—H...O, O—H...O and bifurcated N—H...O,O hydrogen bonds, forming a three‐dimensional framework. In the crystal structure of (II), the two‐dimensional networks are linked via bifurcated N—H...O,O hydrogen bonds involving the sulfate O atoms, forming a three‐dimensional framework. In the crystal structures of both compounds, there are C—H...O hydrogen bonds present, which reinforce the three‐dimensional frameworks.  相似文献   

20.
In the title complex, {[Cd2(C8H3NO6)2(C4H10N2)(H2O)4]·2H2O}n, the CdII atoms show distorted octahedral coordination. The two carboxylate groups of the dianionic 2‐nitroterephthalate ligand adopt monodentate and 1,2‐bridging modes. The piperazine molecule is in a chair conformation and lies on a crystallographic inversion centre. The CdII atoms are connected via three O atoms from two carboxylate groups and two N atoms from piperazine molecules to form a two‐dimensional macro‐ring layer structure. These layers are further aggregated to form a three‐dimensional structure via rich intra‐ and interlayer hydrogen‐bonding networks. This study illustrates that, by using the labile CdII salt and a combination of 2‐nitroterephthalate and piperazine as ligands, it is possible to generate interesting metal–organic frameworks with rich intra‐ and interlayer O—H...O hydrogen‐bonding networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号