首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Reactions of Pentafulvene Complexes of Titanium with Nitriles and iso‐Nitriles — Synthesis and Isomerizations of σ, π‐Chelat Complexes with Cp∼N‐Ligands The reactions of fulvene complexes Cp*Ti{η6—C5H4=C(R)(R')}Cl (R = H, R' = tBu ( 1 ); R = Me, R' = iPr ( 4 )) with nitriles and iso‐nitriles, leading to σ, π‐chelat complexes with Cp∼N‐ligands, have been examined and the formed products characterized. Whereas in the reactions of 1 and 4 , respectively, with nitriles a 1, 2‐mono‐insertion of the CN‐group in the Ti—C(R)(R') (Fv) bond is observed, the reaction with iso‐nitrils leads to the insertion of two molecules iso‐nitrile. The nitrile insertion product of 1 is characterized by an imine‐enamine tautomerization. Whereas the primary built meta stable imine species ( 3 ) was only identified by NMR measurements in solution, the enamine tautomer ( 2 ) crystallized from n‐hexane, so that the crystal structure could be determined. The primary formed iminoacyl complex ( 7 ) rearranges due to the electrophilicity of the titanium centre and builds a Ti—N bond with significant N(pπ) → Ti(dπ) bonding character.  相似文献   

2.
Syntheses and Crystal Structures of Cu and Ag Complexes with [Ta6S17]4— Ions as Ligands In the presence of phosphines saturated solutions of the thiotantalates (NEt4)4[(Ta6S17)] · 3MeCN react with copper or silver salts to give new heterobimetallic Ta—M—S clusters (M = Ag, Cu). These clusters contain the intact cluster core of the [Ta6S17]4— anion. Compounds [Cu(PMe3)4]3[(Ta6S17)Cu(PMe3)] · 2MeCN ( 1 ), (NEt4)[(Ta6S17)Ag3(PMe2iPr)6] · 5MeCN ( 2 ), [(Ta6S17)Cu4 (PMe2iPr)8] · MeCN ( 3 ), [(Ta6S17)Cu5Cl(PMe2iPr)9] · MeCN ( 4 ) and [Ta2Cu2S4Cl2(PMe2iPr)6] · 2MeCN ( 5 ) are presented herein. The structures of these compounds were elucidated by single crystal X‐ray structural analyses.  相似文献   

3.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

4.
A microcrystalline carboxyl‐functionalized imidazolium chloride, namely 1‐carboxymethyl‐3‐ethylimidazolium chloride, C7H11N2O2+·Cl, has been synthesized and characterized by elemental analysis, attenuated total reflectance Fourier transform IR spectroscopy (ATR‐FT‐IR), single‐crystal X‐ray diffraction, thermal analysis (TGA/DSC), and photoluminescence spectroscopy. In the crystal structure, cations and anions are linked by C—H…Cl and C—H…O hydrogen bonds to create a helix along the [010] direction. Adjacent helical chains are further interconnected through O—H…Cl and C—H…O hydrogen bonds to form a (10) layer. Finally, neighboring layers are joined together via C—H…Cl contacts to generate a three‐dimensional supramolecular architecture. Thermal analyses reveal that the compound melts at 449.7 K and is stable up to 560.0 K under a dynamic air atmosphere. Photoluminescence measurements show that the compound exhibits a blue fluorescence and a green phosphorescence associated with spin‐allowed (1π←1π*) and spin‐forbidden (1π←3π*) transitions, respectively. The average luminescence lifetime was determined to be 1.40 ns for the short‐lived (1π←1π*) transition and 105 ms for the long‐lived (1π←3π*) transition.  相似文献   

5.
Synthesis, Structure, and Photochemical Behavior of Olefine Iridium(I) Complexes with Acetylacetonato Ligands The bis(ethene) complex [Ir(κ2‐acac)(C2H4)2] ( 1 ) reacts with tertiary phosphanes to give the monosubstitution products [Ir(κ2‐acac)(C2H4)(PR3)] ( 2 – 5 ). While 2 (R = iPr) is inert toward PiPr3, the reaction of 2 with diphenylacetylene affords the π‐alkyne complex [Ir(κ2‐acac)(C2Ph2)(PiPr3)] ( 6 ). Treatment of [IrCl(C2H4)4] with C‐functionalized acetylacetonates yields the compounds [Ir(κ2‐acacR1,2)(C2H4)2] ( 8 , 9 ), which react with PiPr3 to give [Ir(κ2‐acacR1,2)(C2H4)(PiPr3)] ( 10 , 11 ) by displacement of one ethene ligand. UV irradiation of 5 (PR3 = iPr2PCH2CO2Me) and 11 (R2 = (CH2)3CO2Me) leads, after addition of PiPr3, to the formation of the hydrido(vinyl)iridium(III) complexes 7 and 12 . The reaction of 2 with the ethene derivatives CH2=CHR (R = CN, OC(O)Me, C(O)Me) affords the compounds [Ir(κ2‐acac)(CH2=CHR)(PiPr3)] ( 13 – 15 ), which on photolysis in the presence of PiPr3 also undergo an intramolecular C–H activation. In contrast, the analogous complexes [Ir(κ2‐acac)(olefin)(PiPr3)] (olefin = (E)‐C2H2(CO2Me)2 16 , (Z)‐C2H2(CO2Me)2 17 ) are photochemically inert.  相似文献   

6.
Structure and magnetic properties of N‐diisopropoxyphosphorylthiobenzamide PhC(S)‐N(H)‐P(O)(OiPr)2 ( HLI ) and N‐diisopropoxyphosphoryl‐N′‐phenylthiocarbamide PhN(H)‐C(S)‐N(H)‐P(O)(OiPr)2 ( HLII ) complexes with the CoII cation of formulas [Co{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2] ( 2 ), [Co{PhC(S)‐N(H)‐P(O)(OiPr)2}2{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1a ) and [Co{PhC(S)‐N‐P(O)(OiPr)2}2}(2,2′‐bipy)] ( 3 ), [Co{PhC(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 4 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(2,2′‐bipy)] ( 5 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 6 ) were investigated. Paramagnetic shifts in the 1H NMR spectrum were observed for high‐spin CoII complexes with HLI,II , incorporating the S‐C‐N‐P‐O chelate moiety and two aromatic chelate ligands. Investigation of the thermal dependence of the magnetic susceptibility has shown that the extended materials 1‐2 and 6 show ferromagnetic exchange between distorted tetrahedral ( 1 , 2 ) or octahedral ( 1a , 6 ) metal atoms whereas 3 and 5 show antiferromagnetic properties. Compound 4 behaves as a spin‐canted ferromagnet, an antiferromagnetic ordering taking place below a critical temperature, Tc = 115 K. Complexes 1 and 1a were investigated by single crystal X‐ray diffraction. The cobalt(II) atom in complex 1 resides a distorted tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated ligands. Complex 1a has a tetragonal‐bipyramidal structure, Co(Oax)2(Oeq)2(Seq)2, and two neutral ligand molecules are coordinated in the axial positions through the oxygen atoms of the P=O groups. The base of the bipyramid is formed by two anionic ligands in the typical 1,5‐O,S coordination mode. The ligands are in a trans configuration.  相似文献   

7.
Diastereomeric geminate pairs of chiral bis(2‐oxazoline) ruthenium complexes with bipyridyl‐type N‐heteroaromatics, Λ‐ and Δ‐[Ru(L‐ L)2(iPr‐biox)]2+ (iPr‐biox=(4S,4′S)‐4,4′‐diisopropyl‐2,2′‐bis(2‐oxazoline); L‐ L=2,2′‐bipyridyl (bpy) for 1 Λ and 1 Δ, 4,4′‐dimethyl‐2,2′‐bipyridyl (dmbpy) for 2 Λ and 2 Δ, and 1,10‐phenanthroline (phen) for 3 Λ and 3 Δ), were separated as BF4 and PF6 salts and were subjected to the comparative studies of their stereochemical and photochemical characterization. DFT calculations of 1 Λ and 1 Δ electronic configurations for the lowest triplet excited state revealed that their MO‐149 (HOMO) and MO‐150 (lower SOMO) characters are interchanged between them and that the phosphorescence‐emissive states are an admixture of a Ru‐to‐biox charge‐transfer state and an intraligand excited state within the iPr‐biox. Furthermore, photoluminescence properties of the two Λ,Δ‐diastereomeric series are discussed with reference to [Ru(bpy)3]2+.  相似文献   

8.
Reaction of O,O′‐diisopropylthiophosphoric acid isothiocyanate (iPrO)2P(S)NCS with 1,10‐diaza‐18‐crown‐6, 1,7‐diaza‐18‐crown‐6, or 1,7‐diaza‐15‐crown‐5 leads to the N‐thiophosphorylated bis‐thioureas N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,10‐diaza‐18‐crown‐6 ( H2LI ), N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,7‐diaza‐18‐crown‐6 ( H2LII ) and N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,7‐diaza‐15‐crown‐5 ( H2LIII ). Reaction of the potassium salts of H2LI–III with a mixture of CuI and 2,2′‐bipyridine ( bpy ) or 1,10‐phenanthroline ( phen ) in aqueous EtOH/CH2Cl2 leads to the dinuclear complexes [Cu2(bpy)2LI–III] and [Cu2(phen)2LI–III] . The structures of these compounds were investigated by 1H, 31P{1H} NMR spectroscopy, and elemental analysis. The crystal structures of H2LI and [Cu2(phen)2LI] were determined by single‐crystal X‐ray diffraction. Extraction capacities of the obtained compounds in comparison to the related compounds 1,10‐diaza‐18‐crown‐6, N,N′‐bis[C(=CMe2)CH2P(O)(OiPr)2]‐1,10‐diaza‐18‐crown‐6, N,N′‐bis[C(S)NHP(O)(OiPr)2]‐1,10‐diaza‐18‐crown‐6 towards the picrate salts LiPic, NaPic, KPic. and NH4Pic were also studied.  相似文献   

9.
Metal Complexes of Functionalized Sulfur‐containing Ligands. XVII Synthesis of S ‐Oxides of 1,2,4‐Trithiolane, 1,2,4,5‐Tetrathiane as well as 1,2,3,5,6‐Pentathiepane, and their Reactions with (Ph3P)2Pt(η2‐C2H4). X‐Ray Structure Analysis of 3,3,5,5‐Tetraphenyl‐1,2,4‐trithiolane 1‐oxide 3,3,5,5‐Tetraphenyl‐1,2,4‐trithiolan ( 1 ) was oxidized using m‐chloroperbenzoic acid to give, selectively, the 3,3,5,5‐tetraphenyl‐1,2,4‐trithiolane 1‐oxide ( 2 ). 2 was characterized structurally. The reaction of octamethyl tetrathiadispiro[3.2.3.2]dodecane‐2,9‐dione ( 3 ) with trifluoroperacetic acid at –50 °C yielded the corresponding 5‐oxide 4 . Oxidation of octamethyl pentathiadispiro[3.3.3.2]tridecane‐2,9‐dione ( 5 ) with m‐chloroperbenzoic acid at 0 °C gave the 12‐oxide 6 . Treatment of 2 with two equivalents of (Ph3P)2Pt(η2‐C2H4) ( 7 ) afforded a mixture (1 : 1) of the complexes (Ph3P)2PtSCPh2S ( 8 ) and (Ph3P)2Pt(η2‐Ph2C=S=O) ( 9 ), respectively.  相似文献   

10.
Syntheses and Crystal Structures of Copper and Silver Complexes containing Dithiophosphinato and Trithiophosphonato Ligands The reactions of CuI and AgI salts with diphenyldithiophosphinic acid trimethylsilylester in the presence of tertiary phosphines yield the complexes [Cu(μ‐S)SPPh2(PR3)]2 (R = Me 1a , iPr 1b ), [Ag(μ‐S)SPPh2(PnPr3)]2 ( 2 ), [Ag(S2PPh2)(PEt3)]2 ( 3 ), and [Cu8(μ8‐S)(S2PPh2)6] ( 4 ). The cage complex [(PhPS3)2Cu4(PMe3)5] ( 5 ) is obtained by the reaction of phenyltrithiophosphonic acid trimethylester. All compounds were structurally characterised by X‐ray crystallography.  相似文献   

11.
The cyclometalated monobenzyl complexes [(CbzdiphosR‐CH)ZrBnX] 1 i Pr Cl and 1 Ph I reacted with dihydrogen (10 bar) to yield the η6‐toluene complexes [(CbzdiphosR)Zr(η6‐tol)X] 2 i Pr Cl and 2 Ph I (cbzdiphos=1,8‐bis(phosphino)‐3,6‐di‐tert‐butyl‐9H‐carbazole). The arene complexes were also found to be directly accessible from the triiodide [(CbzdiphosPh)ZrI3] through an in situ reaction with a dibenzylmagnesium reagent and subsequent hydrogenolysis, as exemplified for the η6‐mesitylene complex [(CbzdiphosPh)Zr(η6‐mes)I] ( 3 Ph I ). The tolyl‐ring in 2 i Pr Cl adopts a puckered arrangement (fold angle 23.3°) indicating significant arene‐1,4‐diido character. Deuterium labeling experiments were consistent with an intramolecular reaction sequence after the initial hydrogenolysis of a Zr?C bond by a σ‐bond metathesis. A DFT study of the reaction sequence indicates that hydrogenolysis by σ‐bond metathesis first occurs at the cyclometalated ancillary ligand giving a hydrido‐benzyl intermediate, which subsequently reductively eliminates toluene that then coordinates to the Zr atom as the reduced arene ligand. Complex 2 Ph I was reacted with 2,6‐diisopropylphenyl isocyanide giving the deep blue, diamagnetic ZrII‐diisocyanide complex [(CbzdiphosPh)Zr(CNDipp)2I] ( 4 Ph I ). DFT modeling of 4 Ph I demonstrated that the HOMO of the complex is primarily located as a “lone pair on zirconium”, with some degree of back‐bonding into the C≡N π* bond, and the complex is thus most appropriately described as a zirconium(II) species. Reaction of 2 Ph I with trimethylsilylazide (N3TMS) and 2 i Pr Cl with 1‐azidoadamantane (N3Ad) resulted in the formation of the imido complexes [(CbzdiphosR)Zr=NR′(X)] 5 i Pr Cl‐NAd and 5 Ph I‐NTMS , respectively. Reaction of 2 i Pr Cl with azobenzene led to N?N bond scission giving 6 i Pr Cl , in which one of the NPh‐fragments is coupled with the carbazole nitrogen to form a central η2‐bonded hydrazide(?1), whereas the other NPh‐fragment binds to zirconium acting as an imido‐ligand. Finally, addition of pyridine to 2 i Pr Cl yielded the dark purple complex [(CbzdiphosiPr)Zr(bpy)Cl] ( 7 i Pr Cl ) through a combination of CH‐activation and C?C‐coupling. The structural data and UV/Vis spectroscopic properties of 7 i Pr Cl indicate that the bpy (bipyridine) may be regarded as a (dianionic) diamido‐type ligand.  相似文献   

12.
Tetrakis(p‐tolyl)oxalamidinato‐bis[acetylacetonatopalladium(II)] ([Pd2(acac)2(oxam)]) reacted with Li–C≡C–C6H5 in THF with formation of [Pd(C≡C–C6H5)4Li2(thf)4] ( 1a ). Reaction of [Pd2(acac)2(oxam)] with a mixture of 6 equiv. Li–C≡C–C6H5 and 2 equiv. LiCH3 resulted in the formation of [Pd(CH3)(C≡C–C6H5)3Li2(thf)4] ( 2 ), and the dimeric complex [Pd2(CH3)4(C≡C–C6H5)4Li4(thf)6] ( 3 ) was isolated upon reaction of [Pd2(acac)2(oxam)] with a mixture of 4 equiv. Li–C≡C–C6H5 and 4 equiv. LiCH3. 1 – 3 are extremely reactive compounds, which were isolated as white needles in good yields (60–90%). They were fully characterized by IR, 1H‐, 13C‐, 7Li‐NMR spectroscopy, and by X‐ray crystallography of single crystals. In these compounds Li ions are bonded to the two carbon atoms of the alkinyl ligand. 1a reacted with Pd(PPh3)4 in the presence of oxygen to form the already known complexes trans‐[Pd(C≡C–C6H5)2(PPh3)2] and [Pd(η2‐O2)(PPh3)2]. In addition, 1a is an active catalyst for the Heck coupling reaction, but less active in the catalytic Sonogashira reaction.  相似文献   

13.
Mono‐ and Dinuclear Rhodium Complexes with Arsino(phosphino)methanes in Different Coordination Modes The cyclooctadiene complex [Rh(η4‐C8H12)(κ2tBu2AsCH2PiPr2)](PF6) ( 1a ) reacts with CO and CNtBu to give the substitution products [Rh(L)22tBu2AsCH2PiPr2)](PF6) ( 2 , 3 ). From 1a and Na(acac) in the presence of CO the neutral compound [Rh(κ2‐acac)(CO)(κ‐PtBu2AsCH2PiPr2)] ( 4 ) is formed. The reactions of 1a , the corresponding B(ArF)4‐salt 1b and [Rh(η4‐C8H12)(κ2iPr2AsCH2PiPr2)](PF6) ( 5 ) with acetonitrile under a H2 atmosphere affords the complexes [Rh(CH3CN)22‐R2AsCH2PiPr2)]X ( 6a , 6b , 7 ), of which 6a (R = tBu; X = PF6) gives upon treatment with Na(acac‐f6) the bis(chelate) compound [Rh(κ2‐acac‐f6)(κ2tBu2AsCH2PiPr2)] ( 8 ). From 8 and CH3I a mixture of two stereoisomers of composition [Rh(CH3)I(κ2‐acac‐f6)(κ2tBu2AsCH2PiPr2)] ( 9/10 ) is generated by oxidative addition, and the molecular structure of the racemate 9 has been determined. The reactions of 1a and 5 with CO in the presence of NaCl leads to the formation of the “A‐frame” complexes [Rh2(CO)2(μ‐Cl)(μ‐R2AsCH2PiPr2)2](PF6) ( 11 , 12 ), which have been characterized crystallographically. From 11 and 12 the dinuclear substitution products [Rh2(CO)2(μ‐X)(μ‐R2AsCH2PiPr2)2](PF6) ( 13 ‐ 16 ) are obtained by replacing the bridging chloride for bromide, hydride or hydroxide, respectively. While 12 (R = iPr) reacts with NaI to give the related “A‐frame” complex 18 , treatment of 11 (R = tBu) with NaI yields the mononuclear chelate compound [RhI(CO)(κ2tBu2AsCH2PiPr2)] ( 20 ). The reaction of 20 with CH3I affords the acetyl complex [RhI2{C(O)CH3}(κ2tBu2AsCH2PiPr2)] ( 21 ) with five‐coordinate rhodium atom.  相似文献   

14.
The synthesis and reactivity of a CoI pincer complex [Co(?3P,CH,P‐P(CH)PNMeiPr)(CO)2]+ featuring an η2‐ Caryl?H agostic bond is described. This complex was obtained by protonation of the CoI complex [Co(PCPNMeiPr)(CO)2]. The CoIII hydride complex [Co(PCPNMeiPr)(CNtBu)2(H)]+ was obtained upon protonation of [Co(PCPNMeiPr)(CNtBu)2]. Three ways to cleave the agostic C?H bond are presented. First, owing to the acidity of the agostic proton, treatment with pyridine results in facile deprotonation (C?H bond cleavage) and reformation of [Co(PCPNMeiPr)(CO)2]. Second, C?H bond cleavage is achieved upon exposure of [Co(?3P,CH,P‐P(CH)PNMeiPr)(CO)2]+ to oxygen or TEMPO to yield the paramagnetic CoII PCP complex [Co(PCPNMeiPr)(CO)2]+. Finally, replacement of one CO ligand in [Co(?3P,CH,P‐P(CH)PNMeiPr)(CO)2]+ by CNtBu promotes the rapid oxidative addition of the agostic η2‐Caryl?H bond to give two isomeric hydride complexes of the type [Co(PCPNMeiPr)(CNtBu)(CO)(H)]+.  相似文献   

15.
Ring‐opening polymerization of 1,4‐dioxan‐2‐one in bulk was initiated by three titanium alkoxides, titanium dichlorodiisopropoxide (TiCl2(OiPr)2), titanium chlorotriisopropoxide (TiCl(OiPr)3), and titanium tetraisopropoxide (Ti(OiPr)4). The results indicate that the polymerization rate increased with number of OiPr groups in the initiator. High conversion of monomer (90%) and high molecular weight (11.9 × 104 g/mol) of resulting polymer can be achieved in only 5 min at 60 °C with Ti(OiPr)4 as an initiator. Analysis on nuclear magnetic resonance (NMR) spectra suggests the initiating sites for TiCl2(OiPr)2, TiCl(OiPr)3, and Ti(OiPr)4 to be 1.9, 2.6, and 3.8, respectively. Coordination‐insertion mechanism for the polymerization via cleavage of the acyl–oxygen bonds of the monomer was proved by NMR investigation. Kinetic studies indicate that polymerization initiated by Ti(OiPr)4 followed a first‐order kinetics, with an apparent activation energy of 33.7 kJ/mol. It is noteworthy that this value is significantly lower than earlier reported values with other catalysts, namely La(OiPr)3 (50.5 kJ/mol) and Sn(Oct)2 (71.8 kJ/mol), which makes it an attractive catalyst for reactive extrusion polymerization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
Five coordination compounds of bismuth, lanthanum and praseodymium nitrate with the oxygen‐coordinating chelate ligand (iPrO)2(O)PCH2P(O)(OiPr)2 (L) are reported: [Bi(NO3)3(L)2] ( 1 ), [La(NO3)3(L)2] ( 2 ), [Pr(NO3)3(L)2] ( 3 ), [La(NO3)3(L)(H2O)] ( 4 ) and [Pr(NO3)3(L)(H2O)] ( 5 ). The compounds were characterized by means of single crystal X‐ray crystallography, 1H and 31P NMR spectroscopy in solution, solid‐state 31P NMR spectroscopy, IR spectroscopy, DTA‐TG measurements ( 1 , 2 and 4 ), conductometry and electrospray ionization mass spectrometry (ESI‐MS). In addition, DFT calculations for model compounds of 1 and 2 support our experimental work. In the solid state mononuclear coordination compounds were observed for 1 — 3 , whereas compounds 4 and 5 gave one‐dimensional hydrogen‐bonded polymers via water‐nitrate coordination. Despite of the similar ionic radii of bismuth(III), lanthanum(III) and praseodymium(III) for a given coordination number the bismuth and lanthanide compounds 1 — 3 are not isostructural. The bismuth compound 1 shows a 9‐coordinate bismuth atom whereas lanthanum(III) and praseodymium(III) atoms are 10‐coordinate in the lanthanide complexes 2 — 5 . The general LnO10 coordination motif in compounds 2 — 5 is best described as a distorted bi‐capped square antiprism. The BiO9 polyhedron might be deduced from the LnO10 polyhedron by replacing one oxygen ligand with a stereochemically active lone pair. The one‐to‐one complexes 4 and 5 dissociate in solution to give the corresponding one‐to‐two complexes 2 and 3 , respectively, and solvated Ln(NO3)3. In contrast to the lanthanides, the one‐to‐two bismuth complex 1 is less stable in CH3CN solution and partially dissociates to give solvated Bi(NO3)3 and (iPrO)2(O)PCH2P(O)(OiPr)2.  相似文献   

17.
Reactions of ZnX2 (X = Cl, Br) with equimolar amounts of Li[t‐BuC(NR)2] (R = i‐Pr, Cy) yielded mono‐amidinate complexes [{t‐BuC(NR)2}ZnX]2 (X = Cl, R = i‐Pr 1 , Cy 2 ; X = Br, R = i‐Pr 3 , Cy 4 ), whereas reactions with two equivalents of Li‐amidinate resulted in the formation of the corresponding bis‐amidinate complexes [t‐BuC(NR)2]2Zn (R = i‐Pr 5 , Cy 6 ). 1 ‐ 6 were characterized by elemental analyses, IR, mass and multinuclear NMR spectroscopy (1H, 13C), and single crystal X‐ray analysis ( 1 , 2 , 3 , 6 ). In addition, the single crystal X‐ray structure of [t‐BuC(NCy)2]ZnBr·LiBr(OEt2)2 7 , which was obtained as a byproduct in low yield from re‐crystallization experiments of 4 in Et2O, is reported.  相似文献   

18.
The migratory insertions of cis or trans olefins CH(X)?CH(Me) (X = Ph, Br, or Et) into the metal–acyl bond of the complex [Pd(Me)(CO)(iPr2dab)]+ [B{3,5‐(CF3)2C6H3}4]? ( 1 ) (iPr2dab = 1,4‐diisopropyl‐1,4‐diazabuta‐1,3‐diene = N,N′‐(ethane‐1,2‐diylidene)bis[1‐methylethanamine]) are described (Scheme 1). The resulting five‐membered palladacycles were characterized by NMR spectroscopy and X‐ray analysis. Experimental data reveal some important aspects concerning the regio‐ and stereochemistry of the insertion process. In particular, the presence of a Ph or Br substituent at the alkene leads to the formation of highly regiospecific products. Moreover, in all cases, the geometry of the substituents in the formed palladacycle was the same as in the starting olefin, as a consequence of a cis addition of the Pd–acyl fragment to the C?C bond. Reaction with CO and MeOH of the five‐membered complex derived from trans‐β‐methylstyrene (= [(1E)‐prop‐1‐enyl]benzene) insertion, yielded the 2,3‐substituted γ‐keto ester 9 with an (2RS,3SR)‐configuration (Scheme 3).  相似文献   

19.
[L1AlMe]?THF ( 1 ; L1=CH[C(CH2)](CMe)(2,6‐iPr2C6H3N)2) is prepared by a new method to test its reactivity towards metal complexes to give heterobimetallic or polymetallic complexes. The treatment of 1 with germanium chloride ([LGeCl]), tin chloride ([LSnCl]; L=CH(CMe2,6‐iPr2C6H3N)2), bismuth amide ([1,8‐C10H6(NSiMe3)2BiNMe2]), and dimethyl zinc (ZnMe2) gave the desired compounds with different functional groups on the aluminum center. All compounds have been thoroughly characterized by multinuclear NMR spectroscopy, EI mass spectrometry, X‐ray crystallography ( 2 , 3 , and 5 ), and elemental analysis.  相似文献   

20.
Redistribution reactions between diorganodiselenides of type [2‐(R2NCH2)C6H4]2Se2 [R = Et, iPr] and bis(diorganophosphinothioyl disulfanes of type [R′2P(S)S]2 (R = Ph, OiPr) resulted in the hypervalent [2‐(R2NCH2)C6H4]SeSP(S)R′2 [R = Et, R′ = Ph ( 1 ), OiPr ( 2 ); R = iPr, R′ = Ph ( 3 ), OiPr ( 4 )] species. All new compounds were characterized by solution multinuclear NMR spectroscopy (1H, 13C, 31P, 77Se) and the solid compounds 1 , 3 , and 4 also by FT‐IR spectroscopy. The crystal and molecular structures of 3 and 4 were determined by single‐crystal X‐ray diffraction. In both compounds the N(1) atom is intramolecularly coordinated to the selenium atom, resulting in T‐shaped coordination arrangements of type (C,N)SeS. The dithio organophosphorus ligands act monodentate in both complexes, which can be described as essentially monomeric species. Weak intermolecular S ··· H contacts could be considered in the crystal of 3 , thus resulting in polymeric zig‐zag chains of R and S isomers, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号