首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
A series of mesogen‐jacketed liquid crystalline polymers, poly{2,2,3,3,4,4,4‐heptafluorobutyl 4′‐hydroxy‐2‐vinylbiphenyl‐4‐carboxylate} (PF3Cm, where m is the number of carbon atoms in the alkoxy groups, and m = 1, 4, 6, and 8), the side chain of which contains a biphenyl core with a fluorocarbon substituent at one end and an alkoxy unit of varying length on the other end, were designed and successfully synthesized via atom transfer radical polymerization. For comparison, poly{butyl 4′‐hydroxy‐2‐vinylbiphenyl‐4‐carboxylate} (PC4Cm), similar to PF3Cm but with a butyl group instead of the fluorocarbon substituent, was also prepared. Differential scanning calorimetric results reveal that the glass transition temperatures (Tgs) of the two series of polymers decrease as m increases and Tgs of the fluorocarbon‐substituted polymers are higher than those of the corresponding butyl‐substituted polymers. Wide‐angle X‐ray diffraction measurements show that the mesophase structures of these polymers are dependent on the number of the carbon atoms in the fluorocarbon substituent and the property of the other terminal substituent. Polymers with fluorocarbon substituents enter into columnar nematic phases when m ≥ 4, whereas the polymer PF3C1 exhibits no liquid crystallinity. For polymers with butyl substituents, columnar nematic phases form when the number of carbon atoms at both ends of the side chain is not equal at high temperatures and disappear after the polymers are cooled to ambient temperature. However, when the polymer has the same number of carbon atoms at both ends of the side chain, a hexagonal columnar phase develops, and this phase remains after the polymer is cooled. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
Optically active poly(m‐phenylene)s substituted with chiral oxazoline derivatives have been synthesized by the nickel‐catalyzed Yamamoto coupling reaction of optically active (S)‐4‐benzyl‐2‐(3,5‐dihalidephenyl)oxazoline derivatives (X = Br or I). The structures and chiroptical properties of the polymers were characterized by spectroscopic methods and thermal gravimetric analyses. The polymers showed higher absolute optical specific rotation values than their corresponding monomer, and showed a Cotton effect at transition region of conjugated main chain. The optical activities of the polymers should be attributed to the higher order structure such as helical conformations. Moreover, the helical conformation could be induced by addition of metal salts into polymer solutions. The polymers showed good thermal stabilities, which was attributable to the oxazoline side chains. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
Abstract

A systematic study of crystallographic data has revealed a number of correlations between structural parameters, (e.g., bond angles, bond lengths, dihedral angles) and physical and chemical properties in phosphazenes and related compounds. These include (a) endocyclic bond angles NPN and PNP and their relationships to group electronegativities; (b) endocyclic bond angles NPN and PNP in geminal cyclotriphosphazatrienes, N3P3RR′X4 (X = F, Cl) and their relationships to basicity; (c) deviations from some relationships due to ring puckering and the use of mathematical techniques to “flatten out” these rings; (d) 35Cl nuclear quadrupole resonance frequencies and P–Cl bond lengths and other relationships; (e) exocyclic bond angles viz. OPO, NPN, ClPCl, CPC etc. versus 31P NMR chemical shifts; (f) ring compression and deformation and unusual mass spectrometric and bulk polymerisation properties; (g) relationships in phosphazenylcyclophosphazenes between crystal structure, 4 J(PP) coupling constants, basicity and conformation; (h) relationships between spin-spin coupling constants, dihedral angles in, and conformations of, spiroderivatives of cyclophosphazenes–trigonal planar versus pyramidal nitrogen atoms.  相似文献   

4.
In the title compound, C4H10NO2+·C2F3O2?, the main N—C—COOH skeleton of the protonated amino acid is nearly planar. The C=O/C—N and C=O/O—H bonds are syn and the two methyl groups are gauche to the methyl­ene H atoms. The conformation of the cation in the crystal is compared to that given by ab initio calculations (Hartree–Fock, self‐consistent field molecular‐orbital theory). The tri­fluoro­acetate anion has the typical staggered conformation with usual bond distances and angles. The cation and anion form dimers through a strong O—H?O hydrogen bond which are further interconnected in infinite zigzag chains running parallel to the a axis by N—H?O bonds. Weaker C—H?O interactions involving the methyl groups and the carboxy O atoms of the cation occur between the chains.  相似文献   

5.
A new class of linear unsaturated polyphosphate esters based on divanillylidene cyclohexanone possessing liquid crystalline‐cum‐photocrosslinkable properties have been synthesized from 2,6‐bis[n‐hydroxyalkyloxy(vanillylidene)]cyclohexanone [n = 6,8,10] with various alkyl/aryl phosphorodichloridates in chloroform at ambient temperature. The resultant polymers were characterized by intrinsic viscosity, FT‐IR, 1H, 13C, and 31P‐NMR spectroscopy. All the polymers showed anisotropic behavior under hot stage optical polarized microscope (HOPM). The liquid crystalline textures of the polymers became more transparent with increasing spacer length. The thermal behavior of the polymers was studied by thermogravimetric analysis and differential scanning calorimetry. The Tg, Tm, and Ti of the polymers decreased with increasing flexible methylene chain. The photocrosslinking property of the polymer was investigated by UV light/UV spectroscopy; the crosslinking proceeds via 2π‐2π cycloaddition reactions of the divanillylidene exocyclic double bond of the polymer backbone. The pendant alkyloxy containing polymers show faster crosslinking than the pendant phenyloxy containing polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5215–5226, 2004  相似文献   

6.
Following our continued interest in the production of bioerodible and biodegradable functional polymers for biomedical applications, we synthesized and characterized new unsaturated polyesters. The presence of functional groups in the polymer backbone provided sites for chemical modification, and through a variation in the structure, the physical properties, such as the hydrophilicity and solubility, could be affected. With 1,1-di-n-butyl-stanna-2,7-dioxacyclo-4-heptene as the initiator in the ring-opening polymerization of polyesters, a new set of functionalized polyesters was created. The polymerization of ϵ-caprolactone resulted in poly(ϵ-caprolactone) with a double bond incorporated into the structure. The polymers were obtained in a controlled manner with low molecular dispersities. The double bond was previously incorporated into L -lactide polymers, and the two reactions were compared in this study. The conversion of ϵ-caprolactone, with a degree of polymerization of 50, was completed within 140 min, whereas for L -lactide, only a 45% conversion took place in the same period of time. The dispersities were somewhat higher with ϵ-caprolactone because of the higher reaction rate and, therefore, lower selectivity. The incorporated CC double bond in the polyesters provided a variety of opportunities for further modifications. In this case, the double bond of the L -lactide macromonomers was oxidized into epoxides. Epoxidation was carried out with m-chloroperoxybenzoic acid as a chemical reagent. The conversion of the double bonds into epoxides was completed, and the obtained yields were good (>95%). As a result of the mild reaction conditions, the epoxidation of the double bond was carried out quantitatively without any side reactions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 444–452, 2004  相似文献   

7.
The new poly(arylene vinylene) derivatives, which are composed of biphenylene vinylene phenylene vinylene, biphenylene vinylene m‐phenylene vinylene, terphenylene vinylene phenylene vinylene, and terphenylene vinylene m‐phenylene vinylene as backbone and bulky fluorene pendants at each vinyl bridge, were designed, synthesized, and characterized. The obtained polymers showed weight‐average molecular weights of 11,100–39,800 with polydispersity indexes ranging from 1.5 to 2.1. The resulting polymers were amorphous with high thermal stability and readily soluble in common organic solvents. The obtained polymers showed blue emission (λmax = 456–475 nm) in PL spectra, and polymer 4 containing terphenylene vinylene m‐phenylene vinylene showed the most blue shifted blue emission (λmax = 456 nm). The double layer light‐emitting diode devices fabricated by using obtained polymers as emitter emitted bright blue light. The device showed turn on voltage around 6.5 V and brightness of 70–250 cd/m2. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4923–4931, 2006  相似文献   

8.
Poly[(m‐phenylene vinylene)‐alt‐(o‐phenylene vinylene)]s with different contents of cis‐/trans‐CH?CH ( 3 and 6 ) have been synthesized through Wittig condensation. The polymers exhibit good solubility in common organic solvents such as toluene and tetrahydrofuran. A comparison of the optical properties has been made between 3 and its phenyl regioisomers containing either p‐phenylene or m‐phenylene units. The results show that the regiochemistry of the phenyl ring can be a useful tool for tuning the emission color of π‐conjugated polymers because the extension of π conjugation can only partially be achieved through an o‐phenylene bridge. Although both polymers 3 and 6 exhibit comparable low fluorescence quantum efficiencies (≈0.18) in solution, their films are highly luminescent, showing a broad emission band near 456 nm (blue color). Electroluminescence results show that the device of polymer 3 , which has a higher content of trans‐CH?CH linkages, is about 20 times more efficient than that of 6 . © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2650–2658, 2003  相似文献   

9.
Deuterium labeling of semi‐crystalline polymers can dramatically affect their crystallization behaviors. However, the influence of different labeled positions in a partially deuterated polymer on its crystallization is still far from understood. Here, we synthesized a series of selectively deuterated poly(ε‐caprolactones) (PCLs) through ring‐opening polymerization of ε‐caprolactone with controlled deuteration sites, including fully protiated (D0), fully deuterated (D10), tetra deuteration at the 3‐ and 7‐ caprolactone ring positions (D4) and hexa deuteration at the 4‐, 5‐, and 6‐ caprolactone ring positions (D6). All the PCLs showed a similar lamellar structure and parameters. Differential scanning calorimetry (DSC) analysis revealed that the equilibrium melting temperature T m 0 , melting temperature Tm , crystallization temperature Tc , and crystallization kinetics changed systemically with the deuterium content except for D4, which indicates that the presence of ? CD2? moieties on either side of ester group in the polymer chain combined with isotopic inhomogeneity could influence the chain packing. The nonmonotonic trend of Tm as a function of deuterium content could be attributed to the difference in a hydrogen‐bond like intermolecular interaction between different PCLs. Partially deuterated PCLs (D4 and D6) showed an Avrami index near 2. After analyzing the parameters at the same supercooling temperature ΔTc , the existence of two crystallization regimes of PCLs were detected. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 771–779  相似文献   

10.
Radical polymerization of lactic acid‐based chiral and achiral methylene dioxolanones, a model for conformationally s‐cis locked acrylate, was carried out with AIBN to demonstrate an isospecific free radical polymerization controlled by chirality and conformation of monomer. Polymerization of the dioxolanones proceeded smoothly without ring opening to give a polymer with moderate molecular weight and 100% of maximum isotacticity. ESR spectrum indicated a twisted conformation of the growing poly(methylene dioxolanone) radical in contrast to an acyclic analogous radical, suggesting a restriction of the free rotation around main chain Cα? Cβ bond of the growing radical center. Chirality as well as the polarity and bulkiness of monomer affected the polymer tacticity, and chiral alkyl substituent would afford a high isotactic polymer, in which higher the enantiomeric excess of the monomer was, higher the isotacticity of the polymer was. While, achiral or polar substituents including dibenzyl and trichloromethyl groups would afford an atactic polymer. In addition, glass transition temperature (Tg) of the resulting polymers was significantly high, ranging from 172.2 to 229.8 °C, and even for an isotactic polymer Tg was as high as 206.8 °C. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2007–2016  相似文献   

11.
The solubility of N2 in poly(α‐n‐hexyl‐β,L ‐aspartate), a stereoregular poly(β‐peptide), was investigated with atomistic Monte Carlo simulations. The structure of this material is intermediate between that of polymers able to form a three‐dimensional crystal lattice and that of liquid‐crystalline polymers with a biphasic distribution. The dependence of the calculated solubility coefficients on both the parameters of the force field and the temperature was examined. The results are compared with recently reported experimental data. Furthermore, the motion of the penetrant molecules within the polymer matrix was analyzed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2928–2936, 2003  相似文献   

12.
The effect of treating several commercially important emulsion polymers with different initiator systems was investigated. The initiator system producing highly reactive tert‐butoxyl radicals was able to cause polymer modification. This represented an opportunity to extend the range of properties achievable with a given emulsion polymer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3744–3749, 2003  相似文献   

13.
The conformation of hyperbranched polymers from one pot polymerization with ABn (n = 2, 4) type monomers, applying the reactive 3D bond fluctuation lattice model, are systematically studied using scaling relation RNλ, where R is the radius of gyration or the hydrodynamic radius of a hyperbranched polymer with the degree of polymerization N. The exponent λ was calculated at various monomer concentrations and group conversions. When the concentration of monomers with the equal reactivity of B groups increases from 0.1 to 0.9, the exponents λg and λh (corresponding to the radius of gyration and hydrodynamic radius, respectively) are in the ranges of 0.51–0.37 and 0.41–0.34 at the full conversion of A groups. Especially, we find that λg decreases linearly with the reaction conversion increasing. The ratio of z‐average radius, Rgz/Rhz, ranges from 1.08 to 1.32 and indicates that hyperbranched polymer is soft macromolecule with penetrable structure. In the case of AB2 type monomer with unequal reactivities, λ displays complicated dependence on the reaction conversion and the reactivity ratio. The results of our simulation are consistent with those of experiments and theories, and valuable in better understanding the fundamental properties of hyperbranched polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 610–616, 2010  相似文献   

14.
Poly(9-fluoreneyl methacrylate) was obtained through anionic polymerization with t-BuLi and t-BuMgBr and through radical polymerization with α,α′-azobisisobutyronitrile. Anionic polymerization with t-BuLi in tetrahydrofuran and radical polymerization afforded syndiotactic polymers (rr ∼ 90%), whereas anionic polymerization with Li and Mg initiators in toluene and CH2Cl2 led to isotactic polymers. The thermal and photophysical properties of the polymers were examined. A syndiotactic polymer tended to show higher glass transition and decomposition temperatures than an isotactic polymer. However, polymers with different tacticities were not likely to assume specific, distinctive conformations such as a helix or a π-stacked conformation in solution. An isotactic polymer showed stronger interactions in a CH2Cl2 solution with 2,4,7-trinitro-9-fluorenylidenemalononitrile, an electron-acceptor molecule, than a syndiotactic polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4656–4665, 2004  相似文献   

15.
Hydrogen bonding self‐assemblies were formed in an aqueous medium from a pair of an amphiphilic ABA triblock copolymer and a hydrophobic homopolymer, both with a triple hydrogen bonding site that was complementary to each other and precisely placed at the main‐chain center: (PEGMA)m–(MMA)n– ADA –(MMA)n–(PEGMA)m and (MMA)p– DAD –(MMA)p ( A = hydrogen acceptor; D = hydrogen donor; PEGMA: PEG methacrylate; MMA: methyl methacrylate). The polymers were synthesized by the ruthenium‐catalyzed living radial polymerization with bifunctional initiators (Br– ADA –Br and Cl– DAD –Cl) aiming at pinpoint chain center functionalization to give a symmetric segmental sequence; ADA and DAD initiators were derived from 2,6‐diaminopyridine and thymine, respectively. On mixed equimolar in tetrahydrofuran (THF), both polymers spontaneously associated, and the apparently 1:1 assembly further grew into higher aggregate particles on subsequent addition of water. The aggregates in water/THF were relatively stable and uniform in size, which most likely stems from the intermolecular complementary hydrogen bond interaction at polymer chain centers. In sharp contrast, an equimolar mixture of ADA ‐block polymer and DAD ‐free poly(MMA) in water/THF resulted in larger and irregular particles, and thus short‐lived to eventually collapse. These results indicate that, however structurally marginal, precise pinpoint functionalization of macromolecular chains allows stable self‐assemblies via complementary hydrogen bond interaction even in aqueous media. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4498–4504  相似文献   

16.
Novel aromatic poly(etheraroylhydrazides), PEHZ, incorporating a methylenic sequence (with number of  CH2 units m = 2, 4, 6, 8, 10, 12) in the main chain, have been obtained by solution polycondensation and characterized with several techniques. In particular, Differential Scanning Calorimetry (DSC) and Wide Angle X‐ray Scattering (WAXS) gave interesting results. The complex thermal behavior and the lattice parameters of these linear polyhydrazides are a function of the number of methylene units present in the flexible segment. The relationships we found suggest a model: a polymer with disorder in aliphatic segment layers while preserving chain periodicity, that is the classical model of “conformationally disordered crystalline” polymer. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1687–1701, 1999  相似文献   

17.
By using the two‐liquid geometric method and the three‐liquid acid‐base method, we are the first to determine the surface tensions of ladderlike polyepoxysiloxanes by the measurement of contact angles on thin films. Three kinds of ladderlike polymers have been synthesized: A C (which has the alkyl group and the epoxy group graft to the ladderlike polysilsesquioxane chain), A C P (which has the alkyl group, phenyl group, and epoxy group graft to the ladderlike chain), and A P (which has the phenyl group and epoxy group in the ladderlike side chain). The results showed that when different liquids and different theories are chosen to determine the surface energies, there are some minor differences in the values but a similar trend is still exhibited. The surface energies of these three polymers are in the following order of γSA C < γSA C P < γSA P. Interestingly, the surface energy increases for these polymers are mainly from the nonpolar part of the polyepoxysiloxanes. XPS surface analysis indicated that the Si and O ratios of these polymers at the air‐polymer interface were in the order of A C > A C P > A P, suggesting Si atoms were more likely to migrate to the polymer surface and the bulky effect of the phenyl groups could also interfere with the migration of the Si atoms. As a result, Si and O ratio at the interface determines the order of apparent surface energy for these three polymers. Experimental data also reflect that there are differences between the ladderlike polyepoxysiloxanes and the commercially available linear polysiloxanes. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 138–147, 2000  相似文献   

18.
A series of comb‐type polycarbosilanes of the type [Si(CH3)(OR)CH2]n {where R = (CH2)mR′, R′ = ? O‐p‐biphenyl? X [X = H (m = 3, 6, 8, or 11) or CN (m = 11)], and R′ = (CF2)7CF3 (m = 4)} were prepared from poly(chloromethylsilylenemethylene) by reactions with the respective hydroxy‐terminated side chains in the presence of triethylamine. The product side‐chain polymers were typically greater than 90% substituted and, for R′ = ? O‐p‐biphenyl? X derivatives, they exhibited phase transitions between 27 and 150 °C involving both crystalline and liquid‐crystalline phases. The introduction of the polar p‐CN substituent to the biphenyl mesogen resulted in a substantial increase in both the isotropization temperature and the liquid‐crystalline phase range with respect to the corresponding unsubstituted biphenyl derivative. For R = (CH2)11? O‐biphenyl side chains, an analogous side‐chain liquid‐crystalline (SCLC) polysiloxane derivative of the type [Si(CH3)(O(CH2)11? O‐biphenyl)O]n was prepared by means of a catalytic dehydrogenation reaction. In contrast to the polycarbosilane bearing the same side chain, this polymer did not exhibit any liquid‐crystalline phases but melted directly from a crystalline phase to an isotropic liquid at 94 °C. Similar behavior was observed for the polycarbosilane with a fluorocarbon chain, for which a single transition from a crystalline phase to an isotropic liquid was observed at ?0.7 °C. The molecular structures of these polymers were characterized by means of gel permeation chromatography and high‐resolution NMR studies, and the crystalline and liquid‐crystalline phases of the SCLC polymers were identified by differential scanning calorimetry, polarized optical microscopy, and X‐ray diffraction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 984–997, 2003  相似文献   

19.
The crystal structure of poly(m-phenyulene isophthalamide) was determined by x-ray analysis. The triclinic cell, with a = 5.27 Å, b = 5.25 Å, c (fiber axis) = 11.3 Å, α = 111.5°, β = 111.4° and γ = 88.0° and space group P1, contains one monomeric unit. The crystal density is 1.47 g/cc. The molecules in the crystal are contracted by 1 Å per monomeric unit from the fully extended conformation, and the planes of the benzene rings and adjacent amide groups make angles of about 30°. The crystal is composed of molecular chains connected by N? H···O hydrogen bonds along the a and b axes forming a “jungle gym” network structure. The low tensile modulus of this polymer as compared with that of poly(p-phenylene terephthalamide) is attributed to the contracted molecular conformation.  相似文献   

20.
This contribution presents the synthesis of helical alkyne‐terminated polymers using a functionalized Nickel complex to initiate the polymerization of menthylphenyl isocyanides. The resulting polymers display low dispersities and controlled molecular weights. Copper‐catalyzed azide/alkyne cycloadditions (CuAAC) are performed to attach various azide‐containing compounds to the polymer termini. After azido‐phosphonate moiety attachment the polymer displays a signal at 25.4 ppm in the 31P NMR spectrum demonstrating successful end‐group functionalization. End‐group functionalization of a fluorescent dye allows to determine the functionalization yield as 89% (±8). Successful ligation of an azide‐functionalized peptide sequence (MKLA = 1547 g/mol) increases the Mn from 5100 for the parent polymer to 6700 for the bioconjugate as visualized by GPC chromatography. Analysis by CD spectroscopy confirms that the helical conformation of the poly(isocyanide) block in the peptide–polymer conjugate is maintained after postpolymerization modification. These results demonstrate an easy, generalizable, and versatile strategy toward mono‐telechelic helical polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2766–2773  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号