首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Cocrystallization of imidazole or 4‐methylimidazole with 2,2′‐dithiodibenzoic acid from methanol solution yields the title 2:1 and 1:1 organic salts, 2C3H5N2+·C14H10O4S22−, (I), and C4H7N2+·C14H10O4S2, (II), respectively. Compound (I) crystallizes in the monoclinic C2/c space group with the mid‐point of the S—S bond lying on a twofold axis. The component ions in (I) are linked by intermolecular N—H...O hydrogen bonds to form a two‐dimensional network, which is further linked by C—H...O hydrogen bonds into a three‐dimensional network. In contrast, by means of N—H...O, N—H...S and O—H...O hydrogen bonds, the component ions in (II) are linked into a tape and adjacent tapes are further linked by π–π, C—H...O and C—H...π interactions, resulting in a three‐dimensional network.  相似文献   

2.
1‐Benzoylthioureas contain both carbonyl and thiocarbonyl functional groups and are of interest for their biological activity, metal coordination ability and involvement in hydrogen‐bond formation. Two novel 1‐benzoylthiourea derivatives, namely 1‐benzoyl‐3‐(3,4‐dimethoxyphenyl)thiourea, C16H16N2O3S, (I), and 1‐benzoyl‐3‐(2‐hydroxypropyl)thiourea, C11H14N2O2S, (II), have been synthesized and characterized. Compound (I) crystallizes in the space group P , while (II) crystallizes in the space group P 21/c . In both structures, intramolecular N—H…O hydrogen bonding is present. The resulting six‐membered pseudo‐rings are quasi‐aromatic and, in each case, interact with phenyl rings via stacking‐type interactions. C—H…O, C—H…S and C—H…π interactions are also present. In (I), there is one molecule in the asymmetric unit. Pairs of molecules are connected via two intermolecular N—H…S hydrogen bonds, forming centrosymmetric dimers. In (II), there are two symmetry‐independent molecules that differ mainly in the relative orientations of the phenyl rings with respect to the thiourea cores. Additional strong hydrogen‐bond donor and acceptor –OH groups participate in the formation of intermolecular N—H…O and O—H…S hydrogen bonds that join molecules into chains extending in the [001] direction.  相似文献   

3.
Nonmesogenic 2,3,12,13‐tetrabromo‐5,10,15,20‐tetrakis(4‐butoxyphenyl)porphyrin crystallizes as the title 1,2‐dichloroethane solvate, C60H58Br4N4O4·C2H4Cl2. The porphyrin ring shows a nonplanar conformation, with an average mean plane displacement of the β‐pyrrole C atoms from the 24‐atom (C20N4) core of ±0.50 (3) Å. The 1,2‐dichloroethane solvent is incorporated between the porphyrin units and induces the formation of one‐dimensional chains via interhalogen Cl...Br and butyl–aryl C—H...π interactions. These chains are oriented along the unit‐cell a axis, with the macrocyclic ring planes lying almost parallel to the (010) plane. The chains are arranged in an offset fashion by aligning the butoxy chains approximately above or below the faces of the adjacent porphyrin core, resulting in decreased interporphyrin π–π interactions, and they are held together by weak intermolecular (C—Br...π, C—H...π and C—H...Br) interactions. The nonplanar geometry of the macrocyclic ring is probably due to the weak interporphyrin interactions induced by the solvent molecule and the peripheral butoxy groups. The nonplanarity of the mesogens could influence the mesogenic behaviour differently relative to planar porphyrin mesogens.  相似文献   

4.
The compounds (2′E,2′E)‐2,2′‐(propane‐1,2‐diylidene)bis[1‐(2‐nitrophenyl)hydrazine], C15H14N6O4, (I), and (2Z,3Z)‐ethyl 3‐[2‐(2‐nitrophenyl)hydrazinylidene]‐2‐[2‐(4‐nitrophenyl)hydrazinylidene]butanoate tetrahydrofuran hemisolvate, C18H18N6O6·0.5C4H8O, (II), are puzzling outliers deviating from a general synthetic route aimed at the preparation of substituted pyrazoles. Possible reasons for this outcome, which is exceptional in an otherwise firmly established synthetic procedure, are analyzed. Compound (I) is unsolvated, while compound (II) crystallizes with a tetrahydrofuran solvent molecule lying on an inversion centre. The ethoxycarbonyl chain of (II), in turn, appears disordered into two equally populated (50%) moieties. In both structures, a plethora of different commonly occurring weak intermolecular interactions [viz. π(phenyl)...π(phenyl), π(C=N)...π(C=N), π(phenyl)...π(C=N), N—H...O and C—H...O] appear responsible for the crystal stability. Much less common are the short O(nitro)...O(nitro) contacts which are observed in the structure of (I), an example of unusual `electron donor–acceptor' (EDA) interactions.  相似文献   

5.
Crystal structures are reported for three fluoro‐ or chloro‐substituted 1′‐deoxy‐1′‐phenyl‐β‐D‐ribofuranoses, namely 1′‐deoxy‐1′‐(2,4,5‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (I), 1′‐deoxy‐1′‐(2,4,6‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (II), and 1′‐(4‐chlorophenyl)‐1′‐deoxy‐β‐D‐ribofuranose, C11H13ClO4, (III). The five‐membered furanose ring of the three compounds has a conformation between a C2′‐endo,C3′‐exo twist and a C2′‐endo envelope. The ribofuranose groups of (I) and (III) are connected by intermolecular O—H...O hydrogen bonds to six symmetry‐related molecules to form double layers, while the ribofuranose group of (II) is connected by O—H...O hydrogen bonds to four symmetry‐related molecules to form single layers. The O...O contact distance of the O—H...O hydrogen bonds ranges from 2.7172 (15) to 2.8895 (19) Å. Neighbouring double layers of (I) are connected by a very weak intermolecular C—F...π contact. The layers of (II) are connected by one C—H...O and two C—H...F contacts, while the double layers of (III) are connected by a C—H...Cl contact. The conformations of the molecules are compared with those of seven related molecules. The orientation of the benzene ring is coplanar with the H—C1′ bond or bisecting the H—C1′—C2′ angle, or intermediate between these positions. The orientation of the benzene ring is independent of the substitution pattern of the ring and depends mainly on crystal‐packing effects.  相似文献   

6.
Two novel cocrystals of the N(7)—H tautomeric form of N6‐benzoyladenine (BA), namely N6‐benzoyladenine–3‐hydroxypyridinium‐2‐carboxylate (3HPA) (1/1), C12H9N5O·C6H5NO3, (I), and N6‐benzoyladenine–DL‐tartaric acid (TA) (1/1), C12H9N5O·C4H6O6, (II), are reported. In both cocrystals, the N6‐benzoyladenine molecule exists as the N(7)—H tautomer, and this tautomeric form is stabilized by intramolecular N—H...O hydrogen bonding between the benzoyl C=O group and the N(7)—H hydrogen on the Hoogsteen site of the purine ring, forming an S(7) motif. The dihedral angle between the adenine and phenyl planes is 0.94 (8)° in (I) and 9.77 (8)° in (II). In (I), the Watson–Crick face of BA (N6—H and N1; purine numbering) interacts with the carboxylate and phenol groups of 3HPA through N—H...O and O—H...N hydrogen bonds, generating a ring‐motif heterosynthon [graph set R22(6)]. However, in (II), the Hoogsteen face of BA (benzoyl O atom and N7; purine numbering) interacts with TA (hydroxy and carbonyl O atoms) through N—H...O and O—H...O hydrogen bonds, generating a different heterosynthon [graph set R22(4)]. Both crystal structures are further stabilized by π–π stacking interactions.  相似文献   

7.
The two title chromene compounds, 3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C16H12O2, (I), and 2‐(2‐hydroxy­benzyl­idene)‐3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C19H14O3, (II), have been determined in the monoclinic space group P21/n. Compound (I) is mainly stabilized by C—H⋯π inter­actions. Compound (II) is linked into infinite one‐dimensional chains with a C(3) motif via inter­molecular O—H⋯O hydrogen bonds. The inter­molecular C—H⋯π and π–­π inter­actions also play key roles in stabilizing the crystal packing. Two intra­molecular C—H⋯O hydrogen bonds with S(5) motifs were detected in (II).  相似文献   

8.
In 1,3,5‐triphenyladamantane, C28H28, (I), and 1,3,5,7‐tetraphenyladamantane, C34H32, (II), the molecules possess symmetries 3 and , and are situated across threefold and fourfold improper axes, respectively. The molecules aggregate by means of extensive C—H...π interactions. In (I), the pyramidal shape of the molecules dictates the formation of dimers through a `sixfold phenyl embrace' pattern. The dimers are linked to six close neighbors and constitute a primitive cubic net [H...π = 2.95 (2) and 3.02 (2) Å]. Compound (II) is isomorphous with tetraphenyl derivatives EPh4 of group 14 (E = C–Pb) and ionic salts [EPh4][BPh4] (E = P, As and Sb). The multiple C—H...π interactions arrange the molecules into chains, with a concerted action of CH (phenyl) and CH2 (adamantane) groups as donors [H...π = 3.15 (2) and 3.44 (2) Å, respectively]. The additional interactions with the methylene groups (four per molecule) are presumably important for explaining the high melting point and insolubility of (II) compared with the EPh4 analogs.  相似文献   

9.
The bis‐thionooxalamic acid esters trans‐(±)‐diethyl N,N′‐(cyclohexane‐1,2‐diyl)bis(2‐thiooxamate), C14H22N2O4S2, and (±)‐N,N′‐diethyl (1,2‐diphenylethane‐1,2‐diyl)bis(2‐thiooxamate), C22H24N2O4S2, both consist of conformationally flexible molecules which adopt similar conformations with approximate C2 rotational symmetry. The thioamide and ester parts of the thiooxamate group are significantly twisted along the central C—C bond, with the S=C—C=O torsion angles in the range 30.94 (19)–44.77 (19)°. The twisted scis conformation of the thionooxamide groups facilitates assembly of molecules into a one‐dimensional polymeric structure via intermolecular three‐center C=S...NH...O=C hydrogen bonds and C—H...O interactions formed between molecules of the opposite chirality.  相似文献   

10.
4‐Chloro‐5‐(2‐phenoxyethoxy)phthalonitrile, C16H11ClN2O2, (I), and 4‐chloro‐5‐[2‐(pentafluorophenoxy)ethoxy]phthalonitrile, C16H6ClF5N2O2, (II), show different types of electrostatic interaction. In (I), the phenoxy and phthalonitrile (benzene‐1,2‐dicarbonitrile) moieties are well separated in an open conformation and intermolecular C—H...π interactions are observed in the crystal packing. On the other hand, in (II), the pentafluorophenoxy moiety interacts closely with the Cl atom to form a folded conformation containing an intramolecular halogen–π interaction.  相似文献   

11.
Molecules of 1,2‐bis(4‐bromophenyl)‐1H‐benzimidazole, C19H12Br2N2, (I), and 2‐(4‐bromophenyl)‐1‐(4‐nitrophenyl)‐1H‐benzimidazole, C19H12BrN3O2, (II), are arranged in dimeric units through C—H...N and parallel‐displaced π‐stacking interactions favoured by the appropriate disposition of N‐ and C‐bonded phenyl rings with respect to the mean benzimidazole plane. The molecular packing of the dimers of (I) and (II) arises by the concurrence of a diverse set of weak intermolecular C—X...D (X = H, NO2; D = O, π) interactions.  相似文献   

12.
In the molecule of 4‐(2‐chlorophenyl)pyrrolo[1,2‐a]quinoxaline, C17H11ClN2, (I), the bond lengths are consistent with electron delocalization in the two outer rings of the fused tricyclic system, with a localized double bond in the central ring. The molecules of (I) are linked into chains by a π–π stacking interaction. In (4RS)‐4‐(1,3‐benzodioxol‐6‐yl)‐4,5‐dihydropyrrolo[1,2‐a]quinoxaline, C18H14N2O2, (II), the central ring of the fused tricyclic system adopts a conformation intermediate between screw‐boat and half‐chair forms. A combination of N—H...O and C—H...π(arene) hydrogen bonds links the molecules of (II) into a sheet. Comparisons are made with related compounds.  相似文献   

13.
Different salts of the 2‐phenyl‐1,10‐phenanthrolin‐1‐ium cation, (pnpH)+, are obtained by reacting 2‐phenyl‐1,10‐phenanthroline (pnp), C18H12N2, (I), with a variety of anions, such as hexafluoridophosphate, C18H13N2+·PF6, (II), trifluoromethanesulfonate, C18H13N2+·CF3SO3, (III), tetrachloridoaurate, (C18H13N2)[AuCl4], (IV), and bromide (as the dihydrate), C18H13N2+·Br·2H2O, (V). Compound (I) crystallizes with Z′ = 2, with both independent molecules adopting a coplanar conformation. In (II)–(IV), a hydrogen bond exists between the cation and anion, while one of the lattice water molecules serves as a hydrogen‐bonded bridge between the cation and anion in (V). Reaction of (I) with HAuCl4 gives the salt complex (IV); however, reaction with KAuCl4 produces the monodentate complex trichlorido(2‐phenyl‐1,10‐phenanthroline‐κN10)gold(III), [AuCl3(C18H12N2)], (VI). Dichlorido(2‐phenyl‐1,10‐phenanthroline‐κ2N,N′)copper(II), [CuCl2(C18H12N2)], (VII), results from the reaction of CuCl2·2H2O and (I), in which the CuII center adopts a tetrahedrally distorted square‐planar geometry. The pendent phenyl ring twists to a bisecting position relative to the phenanthroline plane. The square‐planar PdII complex, bromido[2‐(phenanthrolin‐2‐yl)phenyl‐κ3C1,N,N′]palladium(II), [PdBr(C18H11N2)], (VIII), is obtained from the reaction of (I) with [PdCl2(cycloocta‐1,5‐diene)], followed by addition of bromine. A coplanar geometry for the pendent ring is adopted as a result of the tridentate bonding motif.  相似文献   

14.
A new 2,2′‐bi‐1H‐benzimidazole bridging organic ligand, namely 1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole, C26H20N6, L or (I), has been synthesized and used to create three new one‐dimensional coordination polymers, viz.catena‐poly[[dichloridomercury(II)]‐μ‐1,1′‐bis(pyridin‐4‐ylmethyl)‐2,2′‐bi‐1H‐benzimidazole], [HgCl2(C26H20N6)]n, (II), and the bromido, [HgBr2(C26H20N6)]n, (III), and iodido, [HgI2(C26H20N6)]n, (IV), analogues. Free ligand L crystallizes with two symmetry‐independent half‐molecules in the asymmetric unit and each L molecule resides on a crytallographic inversion centre. In structures (II)–(IV), the L ligand is also positioned on a crystallographic inversion centre, whereas the Hg centre resides on a crystallographic twofold axis. Compound (I) adopts an anti conformation in the solid state and forms a two‐dimensional network in the crystallographic bc plane viaπ–π and C—H...π interactions. The three HgII coordination complexes, (II)–(IV), have one‐dimensional zigzag chains composed of L and HgX2 (X = Cl, Br and I), and the HgII centres are in a distorted tetrahedral [HgX2N2] coordination geometry. Complexes (III) and (IV) are isomorphous, whereas complex (II) displays an interesting conformational difference from the others, i.e. a twist in the flexible bridging ligand.  相似文献   

15.
3‐tert‐Butyl‐7‐(4‐methoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H37N3O3, (I), 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C32H39N3O4, (II), 3‐tert‐butyl‐4′,4′‐dimethyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H35N3O4, (III), and 3‐tert‐butyl‐4′,4′‐dimethyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione ethanol 0.67‐solvate, C33H41N3O5·0.67C2H6O, (IV), all contain reduced pyridine rings having half‐chair conformations. The molecules of (I) and (II) are linked into centrosymmetric dimers and simple chains, respectively, by C—H...O hydrogen bonds, augmented only in (I) by a C—H...π hydrogen bond. The molecules of (III) are linked by a combination of C—H...O and C—H...π hydrogen bonds into a chain of edge‐fused centrosymmetric rings, further linked by weak hydrogen bonds into supramolecular arrays in two or three dimensions. The heterocyclic molecules in (IV) are linked by two independent C—H...O hydrogen bonds into sheets, from which the partial‐occupancy ethanol molecules are pendent. The significance of this study lies in its finding of a very wide range of supramolecular aggregation modes dependent on rather modest changes in the peripheral substituents remote from the main hydrogen‐bond acceptor sites.  相似文献   

16.
The crystal structure of the new chiral complex (1R,2R)‐1,2‐di­phenyl‐1,2‐bis(8‐quinoline­sulfonyl­amino)‐ ethyl­enedi­amine–acetone (1/1), C32H26N4O4S2.C3H6O, is reported. The conformation of the C32H26N4O4S2 (BQSDA) mol­ecule is determined by a bifurcated N—H?N hydrogen‐bond system. The acetone of solvation is linked to the BQSDA mol­ecule by an N—H?O hydrogen bond.  相似文献   

17.
In the crystal structure of 6‐phenyl‐3‐thioxo‐2,3,4,5‐tetrahydro‐1,2,4‐triazin‐5‐one, C9H7N3OS, (I), the 1,2,4‐triazine moieties are connected by face‐to‐face contacts through two kinds of double hydrogen bonds (N—H...O and N—H...S), which form planar ribbons along the a axis. The ribbons are crosslinked through C—H...π interactions between the phenyl rings. The molecular structures of two regioisomeric compounds, namely 6‐phenyl‐2,3‐dihydro‐7H‐1,3‐thiazolo[3,2‐b][1,2,4]triazin‐7‐one, C11H9N3OS, (II), and 3‐phenyl‐6,7‐dihydro‐4H‐1,3‐thiazolo[2,3‐c][1,2,4]triazin‐4‐one, C11H9N3OS, (III), which were prepared by the condensation reaction of (I) with 1,2‐dibromoethane, have been characterized by X‐ray crystallography and spectroscopic studies. The crystal structures of (II) and (III) both show two crystallographically independent molecules. While the two compounds are isomers, the unit‐cell parameters and crystal packing are quite different and (II) has a chiral crystal structure.  相似文献   

18.
The 1,5‐benzodiazepine ring system exhibits a puckered boat‐like conformation for all four title compounds [4‐(2‐hydroxyphenyl)‐2‐phenyl‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C21H18N2O, (I), 2‐(2,3‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (II), 2‐(3,4‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (III), and 2‐(2,5‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (IV)]. The stereochemical correlation of the two C6 aromatic groups with respect to the benzodiazepine ring system is pseudo‐equatorial–equatorial for compounds (I) (the phenyl group), (II) (the 2,3‐dimethoxyphenyl group) and (III) (the 3,4‐dimethoxyphenyl group), while for (IV) (the 2,5‐dimethoxyphenyl group) the system is pseudo‐axial–equatorial. An intramolecular hydrogen bond between the hydroxyl OH group and a benzodiazepine N atom is present for all four compounds and defines a six‐membered ring, whose geometry is constant across the series. Although the molecular structures are similar, the supramolecular packing is different; compounds (I) and (IV) form chains, while (II) forms dimeric units and (III) displays a layered structure. The packing seems to depend on at least two factors: (i) the nature of the atoms defining the hydrogen bond and (ii) the number of intermolecular interactions of the types O—H...O, N—H...O, N—H...π(arene) or C—H...π(arene).  相似文献   

19.
The molecules of 3‐amino‐4‐anilino‐1H‐isochromen‐1‐one, C15H12N2O2, (I), and 3‐amino‐4‐[methyl(phenyl)amino]‐1H‐isochromen‐1‐one, C16H14N2O2, (II), adopt very similar conformations, with the substituted amino group PhNR, where R = H in (I) and R = Me in (II), almost orthogonal to the adjacent heterocyclic ring. The molecules of (I) are linked into cyclic centrosymmetric dimers by pairs of N—H...O hydrogen bonds, while those of (II) are linked into complex sheets by a combination of one three‐centre N—H...(O)2 hydrogen bond, one two‐centre C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds.  相似文献   

20.
10‐(4‐Fluoro­phenyl)‐3,3,6,6,9‐penta­methyl‐3,4,6,7,9,10‐hexa­hydro­acridine‐1,8(2H,5H)‐dione, C24H28FNO2, (I), crystallizes with two crystallographically independent mol­ecules (which differ slightly in conformation), while 10‐(4‐fluoro­phenyl)‐9‐propyl‐3,3,6,6‐tetra­methyl‐3,4,6,7,9,10‐hexa­hydro­acridine‐1,8(2H,5H)‐dione, C26H32FNO2, (II), crystallizes with one mol­ecule per asymmetric unit. In both structures, the central ring in the acridine moiety is in a sofa conformation, while the outer rings adopt intermediate half‐chair/sofa conformations. The central pyridine ring is orthogonal to the substituted phenyl ring. In both structures, the packing of the crystal is stabilized by C—H?O intermolecular hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号