首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemical oscillations with periodic adsorption and desorption of surfactant ions, alkyl sulfate ions, at a water/nitrobenzene interface have been investigated. The interfacial tension was measured with a quasi elastic laser scattering (QELS) method and the interfacial electrical potential was obtained. We found that this oscillation consists of a series of abrupt adsorptions of ions, followed by a gradual desorption. In addition, we observed that each abrupt adsorption was always accompanied by a small waving motion of the liquid interface. From the analysis of the video images of the liquid interface or bulk phase, we could conclude that each abrupt adsorption is caused by nonlinear amplification of mass transfer of ions from the bulk phase to the liquid interface by a Marangoni convection, which was generated due to local adsorption of the surfactant ions at the liquid interface that resulted in the heterogeneity of the interfacial tension. In the present paper, we describe the mechanism of the chemical oscillation in terms of the hydrodynamic effect on the ion adsorption processes, and we also show the interfacial chemical reaction with ion exchange during the ion desorption process.  相似文献   

2.
By measuring a time course of interfacial tension and interfacial electrical potential, we successfully observed oscillatory phenomena that were based on alternatively appearing adsorption and desorption processes of anionic surfactant molecules (sodium dodecyl sulfate (SDS)) at the water/nitrobenzene interface. These oscillation patterns were drastically modified by slightly changing the rate of SDS aqueous solution injection into the water phase. When 10 mM of SDS aqueous solution was injected at a low rate, for example, at less than 1 microl/min, abrupt adsorption was repeatedly followed by slow desorption of DS- ions; in other words, the sequence of the oscillation and relaxation processes was repeated. However, when it was injected at a higher rate, no remarkable periodic phenomenon occurred after the first oscillation. In addition, the rapid adsorption process was observed to be accompanied by a flip motion of the liquid/liquid interface and a flow along the interface. This is caused by a Marangoni convection that is brought about by the generation of heterogeneity of interfacial tension. Furthermore, by estimating the flow speed, it was determined that the faster flow tends to quench the periodic oscillation patterns.  相似文献   

3.
The study presents first experimental results of the transfer of magnetite nanoparticles from an aqueous to a second non-miscible non-aqueous liquid phase. The transfer is based on the adsorption of macromolecular surfactants onto the particle surface at the liquid–liquid interface. For a successful direct phase transfer, it is essential to have cations, like ammonium ions, present in the aqueous phase as well as a threshold concentration of surfactant in the organic liquid phase. While penetrating the liquid–liquid interface, the particles are covered with the surfactant and therefore a partial de-agglomeration is initiated. Based on literature and experimental data a mechanism of surfactant adsorption is proposed. The competing adsorption of the surfactant molecules at the liquid–liquid interface leads to the formation of emulsions and therefore to a hindrance for particles passing the interface. Nevertheless a high efficiency of 100% yield can be reached using optimized process parameters for the phase transfer process.  相似文献   

4.
Drop-shape analysis was used to study the binding of streptavidin to biotin at the interface between water and a pendant chloroform droplet. Polyethylene oxide molecules were synthesized with a hydrophobic tail at one end of the molecule and a hydroxyl or biotin group at the other end. The interfacial tension of the water/chloroform interface was measured before and after addition of these amphiphiles to the chloroform phase and before and after addition of streptavidin to the aqueous phase. The hydroxyl-terminated amphiphiles eliminate nonspecific adsorption of the streptavidin to the interface, while streptavidin binds irreversibly to the biotin-terminated molecules. Molecular interactions within this bound layer were studied by measuring changes in the interfacial pressure as the layer is contracted and expanded by changing the volume of the chloroform droplet. A picture of the interfacial structure was obtained from quantitative comparisons between the experimental results and a molecular theory of protein binding to tethered ligands. These comparisons suggest that protein binding is controlled by the extension of the PEO tethers away from the interface.  相似文献   

5.
Cyclic voltammograms and interfacial tension-applied potential curves were recorded at the interface between water containing surface-active bis-quaternary ammonium ions, bis-A(2+), and an organic solvent such as 1,2-dichloroethane or nitrobenzene. An ordinary diffusion-controlled voltammetric wave for the transfer of bis-A(2+) from aqueous phase to organic phase, the first wave, was followed by a typical adsorption-related wave, the second wave. It was found from the potential dependence of the interfacial tension of bis-A(2+) that the second wave was due to the desorption of bis-A(2+) toward the organic phase. The influence of the structure of bis-A(2+) on voltammograms was investigated, and the potential for the first wave was found to depend on both the length of the side chain and that of the spacer chain, whereas the potential for the second wave depended on the latter only. The thermodynamic relations among three processes of the ion transfer, adsorption, and desorption were discussed based on the experimental results.  相似文献   

6.
Melittin, a membrane-active peptide with antimicrobial activity, was investigated at the interface formed between two immiscible electrolyte solutions (ITIES) supported on a metallic electrode. Ion-transfer voltammetry showed well-defined semi-reversible transfer peaks along with adsorptive peaks. The reversible adsorption of melittin at the liquid-liquid interface is qualitatively discussed from voltammetric data and experimentally confirmed by real-time image analysis of video snapshots. It is also demonstrated that polarization of the water/1,2-DCE interface results in drastic drop shape variations caused by large variations of the interfacial tension. The experimental data also confirmed that maximum adsorption occurs near the ion transfer potential. Finally, the interaction of melittin with a monolayer of L-α-dipalmitoyl phosphatidylcholine (DPPC) was also investigated showing that melittin destabilizes the lipidic monolayer facilitating its desorption. The non-covalent complex formation between melittin and DPPC was confirmed by mass spectrometry.  相似文献   

7.
The adsorption behavior and the phase transition of alkanol and fluoroalkanol at the electrified mercury/aqueous solution interface were investigated by the interfacial tension measurements and the thermodynamic analysis. In the alkanol system, it is found that the phase transitions in low interfacial densities occur: the ones from the zero adsorption to the gaseous or the expanded state and the gaseous to the expanded state at the electrified interface depending on the electrostatic nature as well as the concentration in the bulk phase. These phase transitions were verified by the thermodynamic equations derived by the assumption of coexistence of two phases at the electrified interface. Furthermore the distribution of ionic species in the interfacial region is discussed on the basis of dependence of the interfacial charge density of solution phase on an applied potential. Fluoroalkanol, on the other hand, was practically not adsorbed at the electrified interface within this experimental condition. The zero adsorption of fluoroalkanol molecules suggests the driving force of the adsorption may be the interaction hydrophobic group of alcohol molecule and mercury.  相似文献   

8.
The two dominant factors that were found to affect the stability of multiple emulsions in high HLB surfactant systems are the osmotic pressure imbalance between the internal aqueous phase and the external aqueous phase, and the adsorption/desorption characteristics of the emulsifier/surfactant film at the oil/water interface. Synergistic interaction between the low HLB emulsifier and the high HLB surfactant that produces very low interfacial tension of the order of 10(-2) mN/m at the oil/water interface was found to occur in some of the systems investigated. Long term stability was observed in multiple emulsion containing these systems. However, no synergy was observed in systems in which either the oil or the emulsifier, or both, contained unsaturated chains. In fact, desorption of the adsorbed surfactant film was observed in systems containing unsaturated chains. The observed desorption from the interface of the emulsifier in these systems was attributed mainly to the inability of the unsaturated chains to form a close packed, condensed interfacial film. Presence of closely packed, condensed interfacial film is necessary to prevent solubilization of the adsorbed low HLB emulsifier by the high HLB surfactant. Multiple emulsions prepared using systems containing unsaturated hydrocarbons were highly unstable.  相似文献   

9.
There is a close correlation between the interfacial activity and the adsorption of the surfactant at the interface, but the detailed molecular standard information was scarce. The interfacial activity of two traditional anionic surfactants sodium dodecyl benzene sulfonate (SDBS) and sodium oleate (OAS) were studied by experimental and computer simulation methods. With the spinning drop method and the suspension drop method, the interfacial tension of oil/aqueous surfactant systems was measured, and the influence of surfactant concentration and salinity on the interfacial tension was investigated. The dissipative particle dynamics (DPD) method was used to simulate the adsorption of SDBS and OAS at the oil/water interface. It was shown that it is beneficial to decrease interfacial tension if the hydrophobic chains of the surfactant and the oil have similar structure. The accession of inorganic salts causes surfactant molecules to form more compact and ordered arrangements and helps to decrease the interfacial tension. There is an osculation relation between interfacial density and interfacial activity. The interfacial density calculated by molecular simulation is an effective parameter to exhibit the interfacial activity.  相似文献   

10.
Influence of surfactant on gas bubble stability   总被引:2,自引:0,他引:2  
Gas-bubble stability is achieved either by a reduction in the Laplace pressure or by a reduction in the permeability of the gas-liquid interface. Although insoluble surfactants have been shown definitively in many studies to lower the permeability of the gas-liquid interface and hence increase the resistance to interfacial mass transfer, remarkably little work has been done on the effects of soluble surfactants. An experimental system was developed to measure the effect of the soluble surfactant dodecyl trimethylammonium bromide on the desorption and absorption of carbon dioxide gas through a quiescent planar interface. The desorption experiments conformed to the model of non-steady-state molecular diffusion. The absorption experiments, however, produced an unexpected mass transfer mechanism, with surface renewal, probably because of instability in the density gradient formed by the carbon dioxide. In general, the soluble surfactant produced no measurable reduction in the rate of interfacial mass transfer for desorption or absorption. This finding is consistent with the conclusion of Caskey and Barlage that soluble surfactants produce a significantly lower resistance to interfacial mass transfer than do insoluble surfactants. The dynamic adsorption and desorption of the surfactant molecules at the gas-liquid interface creates short-term vacancies, which presumably permit the unrestricted transfer of the gas molecules through the interface. This surfactant exchange does not occur for insoluble surfactants. Gas bubbles formed in the presence of a high concentration of soluble surfactant were observed to dissolve completely, while those formed in the presence of the insoluble surfactant stearic acid did not dissolve easily, and persisted for very long periods. The interfacial concentration of stearic acid rises during bubble dissolution, as it is insoluble, and must eventually achieve full monolayer coverage and a state of compression, lowering the permeability of the interface. Thus, insoluble surfactants or hydrophobic impurities from solid surfaces may account for increased bubble stability.  相似文献   

11.
Sweet and bitter tastes are known to be mediated by G-protein-coupled receptors. The relationship between the chemical structure of gustable molecules and their molecular organization in saliva (aqueous solution) near the surface of the tongue provides a useful tool for elucidating the mechanism of chemoreception. The interactions between stimulus and membrane receptors occur in an anisotropic system. They might be influenced by the molecular packing of gustable molecules within an aqueous solvent (saliva) close to the receptor protein. To investigate the molecular organization of a sweet molecule (sucrose), a bitter molecule (caffeine), and their mixture in an aqueous phase near a "wall", a hydrophobic phase, we modeled this using an air/liquid interface as an anisotropic system. The experimental (tensiometry and ellipsometry) data unambiguously show that caffeine molecules form an adsorption layer, whereas sucrose induces a desorption layer at the air/water interface. The adsorption of caffeine molecules at the air/water interface gradually increases with the volume concentration and is delayed when sucrose is added to the solution. Spectroscopic ellipsometry data show that caffeine in the adsorption layer has optical properties practically identical to those of the molecule in solution. The results are interpreted in terms of molecular association of caffeine with itself at the interface with and without sucrose in the subphase, using the theory of ideal gases.  相似文献   

12.
Fluid flow is observed when a volume of passivated Ag nanoparticles suspended in chloroform is mixed with a water/ethanol (v/v) mixture containing acidified 11-mercaptoundecanoic acid. Following mechanical agitation, Ag nanoparticles embedded in a film are driven from the organic-aqueous interface. A reddish-brown colored film, verified by transmission electron microscopy to contain uniformly dispersed Ag nanoparticles, is observed to spontaneously climb the interior surface of an ordinary, laboratory glass vial. This phenomenon is recorded by a digital video recorder, and a measurement of the distance traveled by the film front versus time is extracted. Surface (interfacial) tension gradients due to surfactant concentration, temperature, and electrostatic potential across immiscible fluids are known to drive interface motion; this well-known phenomenon is termed Marangoni flow or the Marangoni effect. Experimental results are presented that show the observed mass transfer is dependent on an acid surfactant concentration and on the volume fraction of water in the aqueous phase, consistent with fluid flow induced by interfacial tension gradients. In addition, an effective desorption rate constant for the Marangoni flow is measured in the range of approximately 0.01 to approximately 1 s(-1) from a fit to the relative film front distance traveled versus time data. The fit is based on a time-dependent expression for the surface (interface) excess for desorption kinetics. Such flow suggests that purposeful creation of interfacial tension gradients may aid in the transfer of 2- and 3-dimensional assemblies, made with nanostructures at the liquid-liquid interface, to solid surfaces.  相似文献   

13.
The distribution of anthracene-9-carboxylic acid across dibutyl phthalate/gelatin-membrane/water interface of a single microcapsule was analyzed using microcapillary manipulation and microabsorption methods. The partitioning ratio and the distribution rate in the microcapsule/water system were measured for various pH values in the water phase. Results were compared with those in the dibutyl phthalate/water system in the absence of the gelatin membrane. The distribution rate could be analyzed on the basis of a first-order type reaction. The observed rate constant was linearly proportional to the inverse of the microcapsule radius, indicating that the distribution rate is limited by interfacial mass transfer. Analysis of the pH dependence of the interfacial mass transfer rate suggests that the mass transfer of the neutral species of anthracene-9-carboxylic acid (AnH) competes with the ion transfer of the dissociated species (An-) at the liquid/liquid interface in the gelatin membrane of the microcapsule.  相似文献   

14.
采用界面扩张流变技术研究了季铵盐偶联表面活性剂C12-(CH2)2-C12·2Br(Gemini12-2-12)及其与离子液体表面活性剂溴化1-十二烷基-3-甲基咪唑(C12mim Br)复配体系的动态界面张力、扩张流变性质和界面弛豫过程等,探讨了C12mim Br对C12mim Br/Gemini12-2-12混合体系界面性质的影响及C12mim Br对Gemini12-2-12界面聚集行为影响的机制.结果表明,随着离子液体表面活性剂的不断引入,体系界面吸附达到平衡所需的时间逐渐缩短,扩张模量和相角明显降低,界面吸附膜由粘弹性膜转变为近似纯弹性膜;同时,界面及其附近的弛豫过程也发生显著变化,慢弛豫过程消失,快弛豫过程占主导地位,且离子液体浓度越高,快弛豫的贡献越大.这些界面性质的变化主要归因于离子液体表面活性剂C12mim Br参与界面形成及两表面活性剂在界面竞争吸附的结果.少量离子液体表面活性剂C12mim Br的加入可以填补疏松的Gemini12-2-12界面上的空位,形成混合界面吸附膜.随着C12mim Br含量的增加,嵌入界面的C12mim Br分子数不断增多,导致界面上相互缠绕的Gemini12-2-12烷基链"解缠",在体相和界面分子扩散交换的过程中"解缠"的Gemini12-2-12分子从界面上解吸回到体相,与此同时,C12mim Br分子相对较小的空间位阻及较强的疏水作用促使其优先扩散至界面进而取代Gemini12-2-12分子,最终界面几乎完全被C12mim Br分子所占据.  相似文献   

15.
The time dependence of the interfacial tension between water–acidic crude oil and water–synthetic oil was investigated for aqueous phase pHs ranging from 2 to 9 using the du Noüy ring method at 20°C. Myristic acid in dodecane was selected as a model (synthetic oil) for acidic crude oil containing indigenous surfactants, and the similarities and differences between the dynamic interfacial tension behaviours of the natural and synthetic crude oil systems were compared. The initial interfacial tension and the relaxation of the interfacial tension are sensitive to the aqueous phase pH for both systems. The adsorption kinetics of the indigenous surfactants and myristic acid could be well fitted with the monoexponential model, and the time constants obtained in this manner indicates that reorganization of the indigenous surfactants and myristic acid at the w/o interface are pH dependent. The experimental results also indicate that indigenous surfactants in acidic crude oil and myristic acid in dodecane have similar film formation behaviours at the w/o interface for the range of pHs investigated.  相似文献   

16.
Theoretical models of the exchange of matter at interfaces are necessary to interpret relaxation phenomena in surfactant adsorption layers. For liquid-liquid systems, the diffusion-controlled exchanges of surfactant molecules at the interfaces can be influenced by a simultaneous transfer of molecules from one bulk phase to the other. The diffusional mass exchange function is derived taking into account the transfer across the interface. The resulting mass exchange function is used to calculate the interfacial tension response of a liquid-liquid system. As an example, the interfacial response after a ramp-type area perturbation is calculated.  相似文献   

17.
The regulation of spontaneous waves at water/oil interfaces was investigated, focusing on effects of materials and sizes of containers. Trimethylstearylammonium chloride was dissolved in an aqueous phase. Nitrobenzene with potassium iodide and iodine was used as an organic phase. Rotation of interfacial waves with almost triangular shape was observed only in containers made of glass. The nature of interfacial waves is sensitive to container size. There was no interfacial wave in PFA (Teflon) containers. However, when a glass plate was soaked vertically to the interface, oscillation of contact angles of water/oil interfaces to glass plates was observed. The oscillation generated wave propagation along the plate. Dynamic interfacial tension was measured by Wilhelmy method and the pendant drop technique. Results with the Wilhelmy method in small glass containers exhibited spontaneous oscillation. However, oscillations in dynamic interfacial tension were not observed for other cases, i.e., the Wilhelmy method for large glass containers, for PFA containers, and for the pendant drop technique. It was concluded that all nonlinear behavior such as wave generation and apparent tension oscillation could be attributed to the effect of the sidewalls of container on the adsorption/desorption kinetics of the surfactant. We propose a possible scenario which can explain all of the qualitative features of the present experimental findings.  相似文献   

18.
A change of oil/water interfacial tension in the presence of cationic or anionic surfactants in an organic phase was observed due to the addition of charged fine solids in the aqueous phase. The charged fine solids in the aqueous phase adsorb surfactants diffused from the oil phase, thereby causing an increase in the bulk equilibrium surfactant concentration in the aqueous phase, governed by the Stern-Grahame equation. Consequently, surfactant adsorption at the oil-water interface increases, which was demonstrated from the measured reduction of the oil-water interfacial tension. The increased surfactant partition in the aqueous phase in the presence of the charged particles was confirmed by the measured decrease in the surface tension for the collected aqueous solution after solids removal, as compared with the cases without solids addition.  相似文献   

19.
Effects of carbon dioxide presence on the surface tension and adsorption kinetics of 1-hexanol solutions were investigated. Experiments were performed at a range of carbon dioxide vapor pressures and varying concentrations of 1-hexanol aqueous solution. Both dynamic and steady-state surface tensions of 1-hexanol aqueous solution were found to decrease with carbon dioxide pressure, and a linear relationship was observed between the steady-state surface tension and carbon dioxide pressure. To explain the experiments, adsorption and desorption of the two species (1-hexanol and carbon dioxide) from two sides of the vapor-liquid interface were considered. A modified Langmuir isotherm, the modified Langmuir equation of state and the modified kinetic transfer equation were developed. The resulting steady-state and dynamic surface tension data were modeled using the modified Langmuir equation of state and the modified kinetic transfer equation, respectively. Equilibrium constants and adsorption rate constants of 1-hexanol and carbon dioxide were evaluated through a minimization procedure for CO2 pressures ranging from 0 to 690 kPa. From the steady-state modeling, the equilibrium parameters for 1-hexanol and carbon dioxide adsorption from vapor phase and liquid phase were found unchanged at different pressures of carbon dioxide. From the dynamic modeling, the adsorption rate constants for 1-hexanol and carbon dioxide from vapor phase and liquid phase were found to decrease with carbon dioxide pressure. Some fluctuations in the fitting parameters of the dynamic modeling (adsorption rate constants) were observed. These fluctuations may be due to experimental errors, or more likely the limitations of the model used. A major limitation of the model is related to large differences in adsorption/desorption between initial and final stages of the process, and a single set of property parameters cannot describe both initial and final states of the system. Variations may occur depending on which set of data, of initial or final states, is used in the model predictions over the entire time range.  相似文献   

20.
Thermodynamic analysis of the polarised interface between two immiscible electrolyte solutions (ITIES) was outlined, which accounts for the adsorption of phosphatidylcholine (PC) both as a zwitterion and a cation formed by the aqueous cation association with the zwitterionic PC form, as well as for the aqueous cation transfer facilitated by PC leading to its depletion from the interface. Electrocapillary equation was derived clarifying the physical significance of the surface charge density; the differential capacity and the PC surface excess concentration. The potential dependence of the interfacial tension calculated using the Damaskin’s adsorption model of a compound adsorbed in two different forms was found to agree well with that measured for the polarised water|1,2-dichloroethane interface in the presence of dl-α-dipalmitoylphosphatidylcholine. Experimentally observed effect of the nature of the aqueous cation on the interfacial tension was ascribed to the difference in the PC association constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号