首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A technique for frequency-upshifting electromagnetic radiation is demonstrated. By ionizing azulene vapor contained in a resonant cavity using a laser pulse, the frequency of the incident RF wave at 33.3 GHz is upshifted by 5% with greater than 10% efficiency. Maximum frequency upshift of 2.3 times the source frequency is observed. There are two mechanisms thought to be operative in producing the observed frequency upshift: the time-dependent dielectric constant due to increasing plasma density, and rapid Q-switching of the cavity. This technique has the potential of being able to generate tunable and chirped radiation over a very broad (Δf/f≳1) frequency range  相似文献   

2.
基于当前等离子体物理,本文初步讨论了低环径比托卡马克堆中等离子体的特征。在自洽的低环径比堆芯参数下,计算了α粒子约束和损失,以及不同环径比对它们的影响。  相似文献   

3.
HL-2Aװ��΢�������ǵ�����   总被引:1,自引:0,他引:1  
在HL-2A装置上研制了用于测量等离子体密度分布的两套幅度调制微波反射仪。微波反射仪采用时间延迟法。这两套微波反射仪有不同的频率范围(26.5~40GHz和40~60GHz),它们所对应的密度测量范围是(0.84~1.98)×1019m-3和(1.98~4.47)×1019m-3。时间分辨率可达1ms,空间分辨率约为5mm。  相似文献   

4.
A frequency upshift of a short microwave pulse is generated by the interaction between a relativistic underdense ionization front and a periodic electrostatic field with a perpendicular dc magnetic field. When the dc magnetic field is applied, further frequency upshift of 3 GHz is observed with respect to an unmagnetized case which has typically a GHz range. The radiation frequency depends on both the plasma density and the strength of the dc magnetic field, i.e., the plasma frequency and the cyclotron frequency. The frequency of the emitted radiation is in reasonable agreement with the theoretical values.  相似文献   

5.
等离子体对高功率微波的防护   总被引:1,自引:0,他引:1  
提出了用等离子体防护高功率微波破坏电子设备的方法。建立了“介质层-等离子体层-介质层-等离子体层”的反射/吸收模型,其中两层均匀非磁化等离子体厚度各为50mm,等离子体频率为30GHz,等离子碰撞频率为70GHz。计算了微波的透射功率、防护结构的最小防护距离。计算结果表明:对功率10GW、脉冲宽度100ns、天线100m2 (效率50%)的微波源产生的微波,频率小于30GHz时,将被防护装置反射;频率为31~80GHz时,防护结构的最小防护距离约为5km。  相似文献   

6.
Short-pulse, ultra-broadband sources of RF radiation are needed for a variety of new applications. To meet this demand, we have developed and optimized a single-beam Plasma Wave Tube (PWT), The PWT is a unique microwave/millimeter-wave source which utilizes the interaction between beamexcited electron plasma waves to generate kilowatt-power (~10 kW) radiation at microwave to millimeter-wave frequencies with a beam-to-radiation conversion efficiency of ⩾0.4%. In a single-beam PWT, an electron beam (⩽40 kV, ⩾200 A, 5-to-20-μs pulse width) is injected into a gas-filled (e,g., hydrogen) cylindrical waveguide. The beam first ionizes the gas to generate a plasma, and then nonlinearly interacts with the plasma to generate radiation from 6-to-60 GHz. Slew rates of up to 7 GHz/μs have been measured during a single beam pulse. The radiation has a wide instantaneous bandwidth, typically 10 GHz or wider. Electron-beam transport through the waveguide is accomplished with no externally applied magnetic fields because the beam space charge is cancelled by the background plasma  相似文献   

7.
Theoretical and experimental work on the interaction of radiation with a relativistically propagating, underdense ionization front in a waveguide was performed. In the experiment 35-GHz microwave pulses were upshifted and compressed upon encountering a moving front. The frequency spectrum of the upshifted radiation was determined independently using sections of cutoff waveguides and a microwave diffraction grating. These frequency upshifts were proportional to the plasma density of the ionization front as predicted by the theory. The front density was determined using microwave interferometry. The pulsewidths of the upshifted radiation were measured with fast diode detectors. These pulsewidth measurements were also in good agreement with the theory. Frequency upshifts and pulse compressions of up to a factor of five were recorded in this experiment  相似文献   

8.
运用超辐射机理,通过粒子模拟设计了X波段超辐射相对论返波管,并在小型Tesla脉冲源平台上开展了实验研究。通过空间功率积分和直接对辐射微波时域波形的分析得到实验结果:在束压350 kV、束流4.8 kA、脉宽3.1 ns、引导磁场2.2 T条件下,产生的微波辐射功率1.4 GW,中心频率9.36 GHz,脉宽500~700 ps,辐射模式为TE11,能在重复频率100 Hz下稳定运行。功率转换效率超过80%。实验结果与粒子模拟结果比较吻合,成功实现了在短脉冲条件下产生重复频率、亚纳秒脉宽、GW级微波辐射。  相似文献   

9.
Microwave emission was measured from a system consisting of an unmagnetized plasma and a propagating electron beam. A 93-cm2 velvet cathode, with an anode-cathode gap of 5.9 cm, injects the electron current into the plasma through an aluminized Mylar anode. Measurements were made of the diode voltage and current in the 6-μV water dielectric accelerator and net current through the beam-plasma system. The unmagnetized plasma is produced by a 90-μs, 90-Å current pulse, emitted from a thermionic LaB6 electron source, that preionizes argon fill in a 1-m-long, 15-cm-diameter Lucite tube. A microwave spectrometer detects the radio-frequency output in the 2-18, 18-26, and 26-47 GHz bands, filters, and then separates into narrower subbands. The emission takes place in two distinct phases. The 2-GHz output rises promptly with the current pulse and then decays. At 6-GHz and above, a low-level microwave prepulse appears simultaneously with the 2-6 GHz output. This output rises sharply 25 ns after the current pulse begins and includes frequencies out to and beyond 40 GHz. The radio-frequency output falls off before the current pulse ends. The microwave intensity decays monotonically with frequency  相似文献   

10.
Feng  H.  Zhao  W.  Yan  S.  Xie  X. P. 《Laser Physics》2011,21(2):404-409
We have experimentally achieved the 8.3-ps ultra-short pulse at 10 GHz repetition rate with the time jitter as low as 590 fs in an actively mode-locked fiber ring laser. The ring-cavity laser is mode-locked by a semiconductor optical amplifier based on cross-gain modulation. The external CW source is modulated with radio frequency signal by an amplitude modulator as the external optical pulses and, then, injected into the fiber ring cavity to achieve active mode locking. Further investigating the laser output characteristics, it indicates that the linewidth of employed CW source affects properties of the generated ultra-short pulse, such as phase noise and time jitter. Ultra-short pulse at high repetition rate with low time jitter can be generated by the optimization of CW laser source.  相似文献   

11.
Using a numerical model, we propose a source of microwave pulses, based on the interaction of a high-current relativistic electron beam with plasma. The source is an intrinsic noise amplifier with a pulse duration shorter than 3 ns, which does not permit the emergence of feedback and self-excited generation. The wave gain factor depending on the plasma concentration makes it possible to control the radiation frequency in the range 4–17 GHz, within which a spectral width of ~2 GHz, a power of ~150 MW, and an energy efficiency up to 15% are preserved. The possibility of using the available small-size source of high-voltage pulses with a high repetition rate is considered.  相似文献   

12.
带阻性负载细导线对电磁脉冲响应的有限差分算法   总被引:2,自引:2,他引:0       下载免费PDF全文
在原始的FDTD细线算法基础上,把带负载细导线模型分成导线、电阻和吸收三个部分,分别用不同的偏微分方程描述,使其可以处理两端带有纯电阻性负载细线电磁脉冲散射问题,进而得到电阻负载上消耗的总能量及对应的功率消耗。用该方法计算得到的结果与文献结果进行了比较,证明了该方法的有效性。最后用此方法对一种典型情况进行了计算,并对结果进行了分析。该方法是对FDTD方法中细线算法的补充和提高,经过修改也可以用于非阻性负载的情况。  相似文献   

13.
In the experiment with an electron energy of ≈500 keV, the long-pulse (~300T, where T is the oscillation period) the generation regime of a relativistic Cherenkov microwave oscillator without a guiding magnetic field at a carrier frequency of 3.8 GHz has been obtained. A high-power microwave radiation pulse length of ~75 ns, a peak generation power of 210 ± 30 MW, and a power conversion efficiency of 9 ± 2% were attained.  相似文献   

14.
The radiation spectrum of a plasma relativistic microwave oscillator with a pulse power of 50 MW operating in the 10-GHz frequency range is studied experimentally. During a 60-ns-long microwave pulse, the radiation frequency may both remain constant and change by more than 1.5 GHz. The pressure of a gas that ionizes in the microwave field has a significant effect on the radiation frequency and thereby changes the concentration of a pregenerated plasma.  相似文献   

15.
大气压微波等离子体炬的仿真设计与实验   总被引:2,自引:2,他引:0       下载免费PDF全文
设计了一个低成本、高稳定性的基于BJ22矩形波导的微波等离子体炬源。整个系统由1~10 kW主频2.45 GHz的磁控管微波功率源、环形器、调谐器和微波反应腔体组成。通过特殊设计的调谐装置,在气体喷嘴处产生高幅值的电场强度,使工作气体电离形成大气压开放式微波等离子体炬。对影响电场强度的几个关键因素进行了仿真,得出各个参数对场强的影响规律;根据仿真参数设计了微波反应腔体,该系统可以在大气压下激发和维持开放的稳定氩气、氦气、氮气和空气等离子体炬。对等离子体炬的基本特性和基本参数进行了研究,验证了设计参数的正确性,讨论了其可扩展性及潜在的工业应用。  相似文献   

16.
Cathode plasma expansion into a vacuum gap is one of the major physical mechanisms affecting the relativistic magnetron (RM) performance and causing so-called RF pulse shortening. This paper will show how the development of new cathode technologies has led to a significant enhancement of the RM efficiency and power. We have conducted a series of experiments with various cathodes intended for use in RM's. A primary objective in this research was to determine how the cathode geometry and type of emission surface would influence major characteristics of the L-band high-power RM in a rising-sun configuration. In these experiments, the magnetron operated at a fixed frequency of 1.3 GHz, voltage of 100-500 kV, total electron current of 2-8 kA, and total microwave peak power of 100-700 MW depending on operating conditions and type of cathode used. It was found that the geometry (smooth cylindrical, series of disks, pins) and the type of cathode emission surface (stainless steel, velvet, carbon fibers) affected the magnetron performance. This process resulted in a variation of the maximum microwave power of ~30%. The cathode end caps, which have been mostly abandoned after transition from classic to RM's, were shown to be able to increase the microwave power and RM efficiency by ~80% without facilitating the pulse shortening effect. This result was achieved through the implementation of cathode design principles that are compatible with the operation of RM's. A maximum total efficiency of 24% was achieved with a velvet cathode with end caps, determined as the ratio of peak power to input electrical power  相似文献   

17.
A coaxial microwave plasmatron operating at a frequency of 10 GHz is investigated. The microwave field distribution in the plasma jet of the plasmatron is studied using a vibrating string as a small perturbation source. The phase structure of the microwave field inside the plasma is found to differ from that on the outer side of the plasma jet boundary. A slow surface electromagnetic wave propagating along the plasma jet is observed.  相似文献   

18.
Cherenkov superradiance observed when an electron bunch rectilinearly moves through a slow-wave periodic system is studied theoretically and experimentally. The simulation based on averaged equations and the direct numerical simulation using the PIC-code KARAT show that the peak power of the microwave pulses varies as the total number of the particles in a bunch squared. This finding is confirmed experimentally. Ultrashort (300 ps wide) high-power (up to 140 MW) pulses are generated at a frequency of 39 GHz. As an electron source, the high-current subnanosecond RADAN-303 accelerator is used. It injects 0.5-to 1.5-ns-wide electron bunches of current up to 2 kA and energy 200–300 keV. The simulation suggests that the power of the electromagnetic pulses can be increased further (up to 300 or 400 MW) by optimizing the accelerating voltage pulse shape.  相似文献   

19.
We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE(011) cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ~60%). The resonator accepts 3mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor (Q(L)) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ((1)H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the resonator are presented.  相似文献   

20.
The results of numerically simulating a high-power plasma maser—the wideband microwave noise amplifier—are reported. The configuration and parameters of the device are chosen with a view to its possible future use for generating pulses with a duration of 3 ns and pulse frequency bandwidth of 0.3 to 2GHz. In the pulse-periodic mode, it is possible to generate radiation in a continuous range of 2 to 12GHz with an average pulse power of 20MWand pulse energy efficiency of 6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号