首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trichlorides of the lanthanide elements Ln=Ce–Lu form: (a) isotypic hexahydrates LnCl3·6H2O with a coordination number (CN) 8 for the Ln3+ ions. (b) Two isotypic groups of trihydrates LnCl3·3H2O, in the first group Ln=Ce-Dy the CN is 8; the structure of the second group Ln=Er–Lu is unknown. With Ho no trihydrate exists; a dihydrate is formed. (c) Two isotypic groups of monohydrates LnCl3·H2O with unknown structure – Ln=Ce–Dy and Ln=Ho–Lu. For all compounds and for anhydrous chlorides LnCl3 solution enthalpies were measured with an isoperibolic calorimeter. The ΔsolH0 values do not depend only on the difference (lattice enthalpies/hydration enthalpies), but also on the state in solution. According to Spedding the CN of the Ln3+ ions against water changes from 9 to 8 between Nd and Sm, causing minima in the series of solution enthalpies. Dihydrates LnCl3·2H2O are found for Ln=Ce, Pr, Nd, Sm and presumably for Eu and Gd. They are not yet well characterised.  相似文献   

2.
A calorimetric study was performed for adducts of general formula CdBr2·nL (n=1 and 2; L=ethyleneurea (eu) and propyleneurea (pu)). The standard molar reaction enthalpy in condensed phase: CdBr2(c)+nL(c)=CdBr2·nL(c); ΔrHmθ, were obtained by reaction–solution calorimetry, to give the following values for mono- and bis-adducts: −19.54 and −34.59; −7.77 and −19.05 kJ mol−1 for eu and pu adducts, respectively. Decomposition (ΔDHmθ) and lattice (ΔMHmθ) enthalpies, as well as the mean cadmium---oxygen bond dissociation enthalpy, DCd---O, were calculated for all adducts.  相似文献   

3.
Low-temperature heat capacities of the complex Zn(Thr)SO4·H2O (s) have been precisely measured with a small sample adiabatic calorimeter over the temperature range from 78 to 373 K. The initial dehydration temperature of the complex (Td=325.50 K) has been obtained by analysis of the heat-capacity curve. The experimental values of molar heat capacities have been fitted to a polynomial equation by least square method. The standard molar enthalpy of formation of the complex has been determined from the enthalpies of dissolution (ΔdHmΘ) of [ZnSO4·7H2O (s) +Thr (s)] and Zn(Thr)SO4·H2O (s) in 100 ml of 2 mol dm−3 HCl solvent as: ΔfHm,Zn(Thr)SO4·H2OΘ=−2111.7±3.4 kJ mol−1. These experiments were made by using an isoperibol solution calorimeter at 298.15 K.  相似文献   

4.
Polarized absorption spectra of Ba(MnO4)2·3H2O/Ba(ClO4)2·3H2O mixed single crystals are reported at 4.2°K. Previous 1T21A1 assignments for the 5200 Å and 3000 Å absorption bands of MnO4 are substantiated; further support is provided for the 1T11A1 assignment of the 3600 Å absorption band of MnO4. The site-splitting of the 5200 Å 1T2 state is E(1E)−E(1A) ≈ −150 cm−1; that of the 3000 Å 1T2 state is E(1E)−E(1A) ≈ 300 cm−1. A significant e vibronic intensity component is observed in the 5200 Å 1T2 state.  相似文献   

5.
[Re2(Ala)4(H2O)8](ClO4)6 (Re=Eu, Er; Ala=alanine) were synthesized, and the low-temperature heat capacities of the two complexes were measured with a high-precision adiabatic calorimeter over the temperature range from 80 to 370 K. For [Eu2(Ala)4(H2O)8](ClO4)6, two solid–solid phase transitions were found, one in the temperature range from 234.403 to 249.960 K, with peak temperature 243.050 K, the other in the range from 249.960 to 278.881 K, with peak temperature 270.155 K. For [Er2(Ala)4(H2O)8](ClO4)6, one solid–solid phase transition was observed in the range from 270.696 to 282.156 K, with peak temperature 278.970 K. The molar enthalpy increments, ΔHm, and entropy increments,ΔSm, of these phase transitions, were determined to be 455.6 J mol−1, 1.87 J K−1 mol−1 at 243.050 K; 2277 J mol−1, 8.43 J K−1 mol−1 at 270.155 K for [Eu2(Ala)4(H2O)8](ClO4)6; and 4442 J mol−1, 15.92 J K−1 mol−1 at 278.970 K for [Er2(Ala)4(H2O)8](ClO4)6. Thermal decompositions of the two complexes were investigated by use of the thermogravimetric (TG) analysis. A possible mechanism for the thermal decomposition is suggested.  相似文献   

6.
Lamellar crystalline calcium phenylphosphonate, as anhydrous Ca(HO3PC6H5)2 and hydrated Ca(HO3PC6H5)2·2H2O compounds, were used as hosts for intercalation of polar n-alkylmonoamine molecules of the general formula CH3(CH2)nNH2 (n=0–4, 7) in water or 1,2-dichloroethane. An increase in the interlayer distance was observed. The exothermic enthalpic values for intercalation increased with the number of carbon atoms and with increasing concentration of the amines. The intercalation followed by a titration procedure in the solid/liquid interface with Ca(HO3PC6H5)2·2H2O and Ca(HO3PC6H5)2 gave the enthalpy/number of carbons correlations: ΔintH=−(1.74±0.43)–(1.30±0.13)nc and ΔintH=−(4.15±0.15)–(1.07±0.03)nc, for water and 1,2-dichloroethane, respectively. A similar correlation ΔintH=−(4.27±0.80)–(1.85±0.21)nc was obtained in water by using the ampoule breaking procedure for Ca(HO3PC6H5)2·2H2O. The increase in exothermic enthalpic values with the increase in n-aliphatic carbon atoms is more pronounced for the anhydrous compound and also when using the ampoule breaking procedure. The Gibbs free energies are negative. Positive entropic values favor intercalation in these systems.  相似文献   

7.
A novel tetranuclear terbium(III) complex [Tb4(OH)4(pybet)6(H2O)8][Tb4(OH)4(pybet)6(H2O)7 (NO3)](ClO4)14·6H2O has been synthesized and shown by X-ray crystallography to have a cubane-like Tb43-OH)42-carboxylato-O,O′)6 core. The ligand pybet is pyridinoacetate, C5H5+N-CH2CO2. Magnetic susceptibility data were measured for this Tb4 complex in the range of 2.0–320 K and in fields of 1.0 G to 50.0 kG. It is concluded that either there is very weak antiferromagnetic exchange interaction (J = −0.015 cm−1) or there is a small crystal-field splitting of the 7F6 TbIII ground state.  相似文献   

8.
A new family of heteropolytungstate complexes (NH4)21[Ln(H2O)5{Ni(H2O)}2As4W40O140xH2O(Ln=Y, Ce, Pr, Nd, Sm, Eu, Gd) were prepared by the reaction of Na27[NaAs4W40O140]·60H2O with NiCl2·6H2O and Ln(NO3)3·xH2O at pH≈4.5. The crystal structures of (NH4)21[Gd(H2O)5{Ni(H2O)}2As4W40O140]·51H2O was determined by X-ray diffraction analysis and element analysis. The compound crystallizes in the monoclinic space group P21/n with a=19.754(3), b=24.298(4), c=39.350(6) Å, β=100.612(3)°, V=18564(5) Å3, Z=2, R1(wR2)=0.0544(0.0691). The central site S1 and two opposite sites S2 of the big cyclic ligand [As4W40O140]28− are occupied by one Ln3+and two Ni2+, respectively, each site supply four Od coordinating to metal ion, another one water molecule and other five water molecules coordinate, respectively, to Ni2+and Ln3+. Polyanion [Ln(H2O)5{Ni(H2O)}2As4W40O140]21− has C2v symmetry. IR and UV–vis spectra of [NaAs4W40O140]27− of the title compounds are discussed.  相似文献   

9.
Peter C. Junk  Jonathan W. Steed   《Polyhedron》1999,18(27):4646-3597
[Co(η2-CO3)(NH3)4](NO3)·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O were prepared by prolonged aerial oxidation of a solution of Co(NO3)2·6H2O and ammonium carbonate in aqueous ammonia. The formation of these side products highlights the richness of the chemistry of these systems and the possibility of by products if methods are not strictly adhered to. The X-ray crystal structures of [Co(η2-CO3)(NH3)4][NO3]·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O reveal a monomeric octahedral cobalt center with η2-bound CO32− in the former, while the latter consists of a dimeric array where the two cobalt centers are bridged by two OH and one μ2-CO32− groups with three terminal NH3 ligands for each Co center. In both complexes extensive hydrogen bonding interactions are evident.  相似文献   

10.
利用精密自动绝热热量计测定了Nd(Gly)2Cl3·3H2O在80-357K和Pr(Ala)3Cl3·3H2O在80-374K温区的热容. 根据两个化合物的热容计算出了相对于参考温度298.15K的热力学函数(HT?H298.15)和(ST?S298.15). 根据热重(TG)分析结果, 提出了这两个稀土化合物可能的热分解机理. 利用溶解-反应恒温热量计测定相关化合物的溶解焓并设计盖斯热化学循环, 计算出了两个化合物的标准摩尔生成焓.  相似文献   

11.
《Polyhedron》2001,20(28):306-3306
Five new complexes of composition [Cu(dpt)Ni(CN)4] (1) (dpt=dipropylenetriamine), [Cu(dien)Ni(CN)4]·2H2O (2) (dien=diethylenetriamine), [Cu(N,N′-dimeen)Ni(CN)4]·H2O (3) (N,N′-dimeen=N,N′-dimethylethylenediamine), [Cu(N,N-dimeen)Ni(CN)4]·H2O (4) (N,N-dimeen=N,N-dimethylethylenediamine) and [Cu(trimeen)Ni(CN)4] (5) (trimeen=N,N,N′-trimethylethylenediamine) have been obtained by the reactions of the mixture of Cu(ClO4)2·6H2O, appropriate amine and K2[Ni(CN)4] in water and have been characterized by IR and UV–Vis spectroscopies and magnetic measurements. The crystal structure of [Cu(dpt)Ni(CN)4] (1) has been determined by single-crystal X-ray analysis. The structure of 1 consists of a one-dimensional polymeric chain ---Cu(dpt)---NC---Ni(CN)2---CN---Cu(dpt)--- in which the Cu(II) and Ni(II) atoms are linked by CN groups. The nickel atom is four coordinate with four cyanide-carbon atoms (two cyano groups are terminal and two cyano groups (in cis fashion) are bridged) in a square-planar arrangement and the copper atom is five coordinate with two cyanide-nitrogen and three dpt-nitrogen atoms, in a distorted square-pyramidal arrangement. The temperature dependence of magnetic susceptibility (2–300 K) was measured for compound 1. The magnetic investigation showed the presence of a very weak antiferromagnetic interaction (J=−0.16 cm−1) between the copper atoms within each chain through the diamagnetic Ni(CN)4 2− ions.  相似文献   

12.
A metal-organic complex, which has the potential property of absorbing gases, [LaCu6(μ-OH)3(Gly)6im6](ClO4)6 was synthesized through the self-assembly of La3+, Cu2+, glycine (Gly) and imidazole (Im) in aqueous solution and characterized by IR, element analysis and powder XRD. The molar heat capacity, Cp,m, was measured from T = 80 to 390 K with an automated adiabatic calorimeter. The thermodynamic functions [HT − H298.15] and [ST − S298.15] were derived from the heat capacity data with temperature interval of 5 K. The thermal stability of the complex was investigated by differential scanning calorimetry (DSC).  相似文献   

13.
Reactions of CoX2·6H2O (X = Cl, ClO4) with bis(3,5-dimethylpyrazolyl)methane (dmpzm) and formic acid, acetic acid, benzoic acid, salicylic acid, maleic acid, or fumaric acid under the presence of KOH solution produced a new family of Co(II)/dmpzm complexes, [Co(dmpzm)2L]X·nH2O (1: L = O2CH, X = Cl, n = 2; 2: L = OAc, X = Cl, n = 3; 3: L = benzoate, X = ClO4, n = 1/3; 4: L = salicylate, X = ClO4, n = 1/3) and [Co2(dmpzm)4L](ClO4)2·nSolv (5: L = maleate, n = 3, Solv = H2O; 6: L = fumarate, n = 2, Solv = MeOH). These compounds were structurally characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. Compounds 1–4 are mononuclear while 5–6 are binuclear. Each cobalt atom of 1–6 is hexacoordinate, with a distorted octahedral CoN4O2 coordination geometry incorporating two N,N′-bidentate dmpzm ligands and one O,O′-bidentate carboxylate ligand. There are rich intra- and intermolecular hydrogen bonds in the crystals of 1–6, thereby forming either 2D hydrogen-bonded networks (1 and 2) or 3D hydrogen-bonded networks (3–6). In addition, the thermal behaviors of 1–6 were also investigated.  相似文献   

14.
Two new lanthanide complexes of isonicotinic acid N-oxide (HL), namely [Ln(L)2(H2O)4]n·(NO3)n·n(H2O) for Ln = Sm or Tb, have been synthesized and characterized by spectroscopic and crystallographic methods. IR spectra suggest that isonicotinic acid N-oxide acts as a O,O′-bidentate ligand, the N-oxide group as well as the nitrate group are not involved in coordination. Single crystal analyses have shown that both complexes are isomorphous, where the Ln(III) centers are eight coordinated by four O atoms of four water ligands and other four O atoms of two isonicotinic acid N-oxide ligands. The carboxylate groups are only involved in the bidentate syn–syn bridging mode into infinite chains. Hydrogen bonds between aqua ligands, lattice molecules, nitrate and N-oxide groups are formed giving a three-dimensional network.  相似文献   

15.
A potentially decadentate ligand, 1,1,4,7,10,10-hexakis(3,5-dimethyl-1-pyrazolylmethyl)-1,4,7,10-tetraazadecane (tthd), has been synthesized from the reaction of tri-ethylenetetramine with six equivalents of N-hydroxymethyl-3,5-dimethylpyrazole. The tthd ligand forms coordination compounds, M2(tthd)(ClO4)4(H2O)x, when M is Co, Ni, Cu, Zn and Cd and x = 4–8; and M2(tthd)(A)2(ClO4)2(H2O)x when M is Co and Ni, A is NCS or Cl, and x = 4–8. The cobalt compound, Co2(tthd)(ClO4)2(H2O)2(MeOH)1.75, crystallizes in the triclinic space group P1, a = 1.959(2), b = 1.5657(3), c = 2.1244(3) nm, = 105.5(1), β = 96.9(1), γ = 112.1(1). Due to severe disorder of the anions the structure could only be refined to an Rw, value of 0.099. The ligand acts as a decadentate, dinucleating ligand. The cobalt ions are distorted octahedrally surrounded by five N-atoms of the tthd ligand and an O-atom of water occupying the sixth coordination place. The other perchlorate compounds have very similar structures, as can be concluded from spectroscopic data.

In the thiocyanate and chloride compounds the anions have replaced the coordinated water molecules, resulting in octahedral Ni compounds. With Co thiocyanate, however, tthd acts as an octadentate ligand, resulting only in five-coordinated compounds.  相似文献   


16.
Hydrated strontium borate, SrB4O7·3H2O, has been synthesized and characterized by XRD, FT-IR, DTA-TG and chemical analysis. The molar enthalpy of solution of SrB4O7·3H2O in 1 mol dm−3 HCl(aq) was measured to be (21.15 ± 0.29) kJ mol−1. With incorporation of the previously determined enthalpies of solution of Sr(OH)2·8H2O(s) in [HCl(aq) + H3BO3(aq)] and H3BO3 in HCl(aq), and the enthalpies of formation of H2O(l), Sr(OH)2·8H2O(s) and H3BO3(s), the enthalpy of formation of SrB4O7·3H2O was found to be −(4286.7 ± 3.3) kJ mol−1.  相似文献   

17.
The solid–liquid equilibria of the ternary system H2O–Fe(NO3)3–Co(NO3)2 were studied by using a synthetic method based on conductivity measurements.

Two isotherms were established at 0 and 15 °C, and the stable solid phases which appear are the iron nitrate nonahydrate (Fe(NO3)3·9H2O), the iron nitrate hexahydrate (Fe(NO3)3·6H2O), the cobalt nitrate hexahydrate (Co(NO3)2·6H2O) and the cobalt nitrate trihydrate (Co(NO3)2·3H2O).  相似文献   


18.
The reaction of Ln(NO3)3·6H2O (Ln=La, Ce, Pr or Nd) with a sixfold excess of Ph3PO in acetone formed [Ln(Ph3PO)4(NO3)3]·Me2CO. The crystal structure of the La complex shows a nine-coordinate metal centre with four phosphine oxides, two bidentate and one monodentate nitrate groups, and PXRD studies show the same structure is present in the other three complexes. In CH2Cl2 or Me2CO solutions, 31P NMR studies show that the complexes are essentially completely decomposed into [Ln(Ph3PO)3(NO3)3] and Ph3PO. Similar reactions in ethanol gave [Ln(Ph3PO)3(NO3)3] only. In contrast for Ln=Sm, Eu or Gd, only the [Ln(Ph3PO)3(NO3)3] are formed from either acetone or ethanol solutions. For the later lanthanides Ln=Tb–Lu, acetone solutions of Ln(NO3)3·6H2O and Ph3PO gave [Ln(Ph3PO)3(NO3)3] only, even with a large excess of Ph3PO, but from cold ethanol [Ln(Ph3PO)4(NO3)2]NO3 (Ln=Tb, Ho–Lu) were obtained. The structure of [Lu(Ph3PO)4(NO3)2]NO3 shows an eight-coordinate metal centre with four phosphine oxides and two bidentate nitrate groups. In solution in CH2Cl2 or Me2CO the tetrakis-complexes show varying amounts of decomposition into mixtures of [Ln(Ph3PO)3(NO3)3], [Ln(Ph3PO)4(NO3)2]NO3 and Ph3PO as judged by 31P{1H} NMR spectroscopy. The [Ln(Ph3PO)3(NO3)3] also partially decompose in solution for Ln=Dy–Lu, forming some tetrakis(phosphine oxide) species.  相似文献   

19.
The optical spectra of Er(BH4)3·3THF neat crystals and La, Gd, Y(BH4)3·3THF mixed crystals are reported and analyzed. Lanthanum borohydride is found to have a different room temperature crystal structure (triclinic) from Er, Gd, Y(BH4)3·3THF (Pbcn). At low temperature the Pbcn crystals undergo a phase transition to a structure with two crystallographically inequivalent sites in a unit cell. The optical spectra of Er(BH4)3·3THF in Er, Y, Gd(BH4)3·3THF crystals clearly evidence these two sites. Large vibronic intensity is observed at 1.6 K and 77 K and nine “molecular” vibrations are assigned. These modes are quite similar to those found for U(BH4)4. Er (BH4)3·3THF spectra are very different: no vibronic transitions are observed but many (often upwards of fifty for a given manifold) weak sharp “satellite” lines are found associated with pure electronic transitions. These data are discussed in terms of structural differences and comments on bonding and covalent character in lanthanide borohydrides are made.  相似文献   

20.
Four novel tetranuclear macrocyclic complexes of the formula [(CuLi)3Fe](ClO4)3·3H2O (i=1–4, Li are the dianions of the [14]N4 and [15]N4 macrocyclic oxamides, namely 2,3-dioxo-5,6:13,14-dibenzo-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene, 2,3-dioxo-5,6:13,14-dibenzo-9-methyl-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene and 2,3-dioxo-5,6:14,15-dibenzo-7,13-bis(ethoxycarbonyl)-1,4,8,12-tetraazacyclotetradeca-7,12-diene] have been prepared and characterized. These complexes are the first examples of oxamido-bridged Cu(II)–Fe(III) heterometallic species. Cryomagnetic studies on [(CuL1)3Fe](ClO4)3·3H2O (1) and [(CuL3)3Fe](ClO4)3·3H2O (3) (77–300 K) revealed that the Cu(II) and Fe(III) ions interact antiferromagnetically through the oxamido bridge, with the exchange integral J=−30.8 cm−1 for 1 and J=−28.7 cm−1 for 3 based on . The interaction parameters have been compared with that of the related [Cu3Mn] compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号