首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Reactions of but-3-yn-2-one (2) with aldehydes 1 in the presence of a Lewis acid and dimethyl sulfide (3 a) predominantly gave (E)-alpha-(halomethylene)aldols 4-5 in high yields, while reactions of methyl propiolate (6 a) mainly afforded (Z)-3-halogeno-2-(hydroxymethyl)acrylates 7-8 in low to moderate yields. A reaction of dimethyl acetylenedicarboxylate (10) with 1 a in the presence of TiCl(4) and 1,1,3,3-tetramethylthiourea (3 c) produced maleate (E)-11 (40 %) and butenolide 12 (40 %). When a reaction of 6 a with 1 a was carried out in the presence of TiBr(4) and 3 a (0.2 equiv) at -20 degrees C for 60 h, 3-(methylthio)-2-(hydroxyalkyl)acrylate 9 a was obtained in an 8 % yield. Experiments were conducted in order to elucidate the formation mechanism of 9 a, and it was made clear that 9 a was formed via the processes of the Michael addition of sulfide 3 a to alkynoate 6 a and an aldol reaction with 1 a and demethylation.  相似文献   

2.
The compounds [Co(2)(CO)(8)] and nido-7,8-C(2)B(9)H(13) react in CH(2)Cl(2) to give a complex mixture of products consisting primarily of two isomers of the dicobalt species [Co(2)(CO)(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (1), together with small amounts of a mononuclear cobalt compound [Co(CO)(2)(eta(5)-10-CO-7,8-C(2)B(9)H(10))] (5) and a charge-compensated carborane nido-9-CO-7,8-C(2)B(9)H(11) (6). In solution, isomers 1a and 1b slowly equilibrate. However, column chromatography allows a clean separation of 1a from the mixture, and a single-crystal X-ray diffraction study revealed that each metal atom is ligated by a terminal CO molecule and in a pentahapto manner by a nido-C(2)B(9)H(11) cage framework. The two Co(CO)(eta(5)-7,8-C(2)B(9)H(11)) units are linked by a Co-Co bond [2.503(2) ?], which is supported by two three-center two-electron B-H right harpoon-up Co bonds. The latter employ B-H vertices in each cage which lie in alpha-sites with respect to the carbons in the CCBBB rings bonded to cobalt. Addition of PMe(2)Ph to a CH(2)Cl(2) solution of a mixture of the isomers 1, enriched in 1b, gave isomers of formulation [Co(2)(CO)(PMe(2)Ph)(eta(5)-7,8-C(2)B(9)H(11))(2)] (2). Crystals of one isomer were suitable for X-ray diffraction. The molecule 2a has a structure similar to that of 1a but differs in that whereas one B-H right harpoon-up Co bridge involves a boron atom in an alpha-site of a CCBBB ring coordinated to cobalt, the other uses a boron atom in the beta-site. Reaction between 1b and an excess of PMe(2)Ph in CH(2)Cl(2) gave the complex [CoCl(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))] (3), the structure of which was established by X-ray diffraction. Experiments indicated that 3 was formed through a paramagnetic Co(II) species of formulation [Co(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))]. Addition of 2 molar equiv of CNBu(t) to solutions of either 1a or 1b gave a mixture of two isomers of the complex [Co(2)(CNBu(t))(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (4). NMR data for the new compounds are reported and discussed.  相似文献   

3.
Direct intramolecular cation-pi interaction between phenyl and pyridinium moieties in 1a(+) has been experimentally evidenced through pH-dependent (1)H NMR titration. The basicity of the pyridinyl group (pK(a) 2.9) in 1a can be measured both from the pH-dependent chemical shifts of the pyridinyl protons as well as from the protons of the neighboring phenyl and methyl groups as a result of electrostatic interaction between the phenyl and the pyridinium ion in 1a(+) at the ground state. The net result of this nearest neighbor electrostatic interaction is that the pyridinium moiety in 1a becomes more basic (pK(a) 2.92) compared to that in the standard 2a (pK(a) 2.56) as a consequence of edge-to-face cation (pyridinium)-pi (phenyl) interaction, giving a free energy of stabilization (DeltaDeltaG(o)pKa) of -2.1 kJ mol(-1). The fact that the pH-dependent downfield shifts of the phenyl and methyl protons give the pK(a) of the pyridine moiety of 1a also suggests that the nearest neighbor cation (pyridinium)-pi (phenyl) interaction also steers the CH (methyl)-pi (phenyl) interaction in tandem. This means that the whole pyridine-phenyl-methyl system in 1a(+) is electronically coupled at the ground state, cross-modulating the physicochemical property of the next neighbor by using the electrostatics as the engine, and the origin of this electrostatics is a far away point in the molecule-the pyridinyl-nitrogen. The relative chemical shift changes and the pK(a) differences show that the cation (pyridinium)-pi (phenyl) interaction is indeed more stable (DeltaDeltaG(o)pKa = -2.1 kJ mol(-1)) than that of the CH (methyl)-pi (phenyl) interaction (DeltaDeltaG(o)pKa = -0.8 kJ mol(-1)). Since the pK(a) of the pyridine moiety in 1a is also obtained through the pH-dependent shifts of both phenyl and methyl protons, it suggests that the net electrostatic mediated charge transfer from the phenyl to the pyridinium and its effect on the CH (methyl)-pi (phenyl) interaction corresponds to DeltaG(o)pKa of the pyridinium ion (approximately 17.5 kJ mol(-1)), which means that the aromatic characters of the phenyl and the pyridinium rings in 1a(+) have been cross-modulated owing to the edge-to-face interaction proportional to this DeltaG(o)pKa change.  相似文献   

4.
The construction of a designed beta-hairpin structure, containing a central three-residue loop has been successfully achieved in the synthetic nonapeptide Boc-Leu-Phe-Val-(D)Pro-(L)Pro-(D)Ala-Leu-Phe-Val-OMe (2). The design is based on expanding the two-residue loop established in the peptide beta-hairpin Boc-Leu-Phe-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (1). Characterization of the registered beta-hairpins in peptides 1 and 2 is based on the observation of key nuclear Overhauser effects (NOEs) in CDCl(3) and CD(3)OH. Solvent titration and temperature dependence of NH chemical shifts establish the identity of NH groups involved in interstrand hydrogen bonding. In peptide 2, the antiparallel registry is maintained, with the formation of a (D)Pro-(L)Pro-(D)Ala loop, stabilized by a 5-->1 hydrogen bond between Val3 CO and Leu7 NH groups (C(13), alpha-turn) and a 3-->1 hydrogen bond between (D)Pro4 CO and (d)Ala6 NH groups (C(7), gamma-turn). NMR derived structures suggest that in peptide 2, (d)Ala(6) adopts an alpha(L) conformation. In peptide 1, the (D)Pro-(L)Pro segment adopts a type II' beta-turn. Replacement of (D)Ala (6) in peptide 2 by (L)Ala in peptide 3 yields a beta-hairpin conformation, with a central (D)Pro-(L)Pro two-residue loop. Strand slippage at the C-terminus results in altered registry of the antiparallel strands.  相似文献   

5.
The new ligand Ph(2)(O)POCH(2)C(pz)(3) (pz = pyrazolyl ring), prepared from the reaction of HOCH(2)C(pz)(3) and Ph(2)P(O)Cl in the presence of base, reacts with either AgBF(4) or Fe(BF(4))(2).6H(2)O in a 2/1 molar ratio to yield {[Ph(2)(O)POCH(2)C(pz)(3)](2)Ag}(BF(4)) () and {[Ph(2)(O)POCH(2)C(pz)(3)](2)Fe}(BF(4))(2) (), respectively. In the structure of , the silver is in an unusual planar geometry with each of the ligands in a kappa(2)-kappa(0) coordination mode. Slow evaporation of a thf solution of yields crystalline [Ph(2)(O)POCH(2)C(pz)(3)Ag](2)(thf)(2)}(BF(4))(2) (). In each cationic unit of , the two Ph(2)(O)POCH(2)C(pz)(3) ligands coordinate to the same two silver(i) centers in a kappa(2)-kappa(1) bonding mode, with a silver atom separation of 3.36 A. The supramolecular structure of both and is dominated by a pair of cooperative hydrogen bonding interactions between the Ph(2)P(O) secondary tecton and a hydrogen atom from a methylene group situated on a neighboring building block, which arranges the cations in chains. The reaction of HC(pz)(3) and AgO(3)SCF(3) (AgOTf) yields {[HC(pz)(3)](2)Ag(2)}(OTf)(2) (). The cationic unit in has a structure very similar to that of , but with a much shorter distance between the silver atoms at 2.86 A. The supramolecular structure of is dominated by an unusual pyrazolyl embrace interaction where the acceptor ring in the C-Hpi interaction is the pyrazolyl ring kappa(1)-bonded to silver in the adjacent dimeric unit rather than the other ring in a kappa(2)-bonded Cpz(2) unit. This interaction arranges the cations in chains which are further organized into sheets by the triflate anions that link the chains via combined AgO/CHO interactions. The iron in is octahedral with each tris(pyrazolyl)methane unit in the kappa(3)-tripodal coordination mode. The supramolecular structure is sheets formed by hydrogen bonding between the Ph(2)P(O) oxygen and a meta-position hydrogen on one of the diphenylphosphine rings from an adjacent cation.  相似文献   

6.
Synthesis and analytical properties of 3,4-dihydroxy-benzaldehyde guanylhydrazone are described. The reagent was tested with 43 cations but only Co(II), Fe(II), Fe(III), Mo(VI), W(VI) and V(V) gave colored complexes. Spectral characteristics of the reagent are presented. Procedure for a selective a determination of Co(II), a sensitive determination of Fe(III) and determination of Mo(VI), W(VI) and V(V) in presence of large amounts of Fe(III) are reported. The method was applied for the determination (a) of Co(II) in presence of other cations at excess (b) of Fe(III) in a city drinking water sample without preconcentration and (c) of Mo(VI) in a standard steel sample.  相似文献   

7.
A heteronuclear complex of composition trans-[(NH(3))(2)Pt(N4-1-MeC(-)-N3)(2)Cu(H(2)O)(2)](ClO(4))(2) (1a), with 1-MeC(-) = 1-methylcytosinate, has been prepared and characterized by X-ray crystallography. 1a (Cu,Pt) is a linkage isomer of a previously described compound with the two metals inverted (Pt,Cu). The intermetallic distances are significantly different in the two types of compounds, 2.6109(9) A in 1a, yet 2.49-2.56 A in several forms of the linkage isomer. When heated in water in the presence of air, 1a is converted in low yield into diplatinum(III) compounds [(H(3)N)Pt(1-MeC(-)-N3,N4)(4)Pt(NH(3))](2+) (2a) and [(H(2)O)Pt(1-MeC(-)-N3,N4)(4)Pt(NH(3))](2+) (2b), which were crystallized as ClO(4)(-) salts. In a modified procedure a third representative of this group of diplatinum(III) compounds, [(O(2)N)Pt(1-MeC(-)-N3,N4)(4)Pt](+) (2c) was isolated. All three compounds contain the four bridging 1-MeC ligands in a head,tail,head,tail arrangement with Pt-Pt distances (2.4516(7)-2.4976(9) A) that are the shortest ones among diplatinum(III) compounds containing nucleobases.  相似文献   

8.
Reactions between the mesitylene (mes) dication [(η(6)-mes)(2)Fe](2+) (1a) [(PF(6)(-))(2) salt] and lithium o-carboranes Li[1-R-1,2-C(2)B(10)H(11)] (2) (R = H, 2a; Me, 2b; Ph, 2c) at low temperature (-60 °C, 1 h, followed by stirring for 2 h at r.t.) in THF resulted in a clean addition of the corresponding carborane anions to one of the unsubstituted arene sites in 1a, forming a series of orange monocations of general structure [(η(5)-mes-exo-6-{2-R-1,2-C(2)B(10)H(11)})Fe(η(6)-mes)](+) (3) (R = H, 3a; Me, 3b; Ph, 3c) which were isolated as PF(6)(-) salts (3PF(6)) in yields ranging 50-75%. Individual complexes were obtained on purification by LC or preparative TLC on a silica gel substrate, using MeCN-CH(2)Cl(2) mixtures as the mobile phase. Interestingly, the room-temperature reaction between 2a (threefold excess) and 1a(PF(6))(2) with a reverse order of addition of the reaction components yielded an orange salt [(η(5)-mes-exo-6-{1,2-C(2)B(10)H(11)})Fe(η(6)-mes)](+)[closo-nido-H(11)B(10)C(2)-C(2)B(10)H(12)](-) (3acCA) (cCA = conjucto-carborane anion = [closo-nido-H(11)B(10)C(2)-C(2)B(10)H(12)](-)) as a sole product in 71% yield. The formation of this conjucto anion can be taken as a strong support for the participation of a radical-chain mechanism in the ostensible nucleophilic addition which we suppose to be initiated by the formation of the [(mes)(2)Fe(+)]˙ radical cation. The structures of both 3PF(6) and 3acCA have been established by X-ray diffraction and the constitution of all compounds isolated is in agreement with elemental analyses, multinuclear NMR data, and MS spectra.  相似文献   

9.
The bis-bidentate bridging ligand L {α,α'-bis[3-(2-pyridyl)pyrazol-1-yl]-1,4-dimethylbenzene}, which contains two chelating pyrazolyl-pyridine units connected to a 1,4-phenylene spacer via flexible methylene units, reacts with transition metal dications to form a range of polyhedral coordination cages based on a 2M:3 L ratio in which a metal ion occupies each vertex of a polyhedron, a bridging ligand lies along every edge, and all metal ions are octahedrally coordinated. Whereas the Ni(II) complex [Ni(8)L(12)](BF(4))(12)(SiF(6))(2) is an octanuclear cubic cage of a type we have seen before, the Cu(II), Zn(II), and Cd(II) complexes form new structural types. [Cu(6)L(9)](BF(4))(12) is an unusual example of a trigonal prismatic cage, and both Zn(II) and Cd(II) form unprecedented hexadecanuclear cages [M(16)L(24)]X(32)(X = ClO(4) or BF(4)) whose core is a skewed tetracapped truncated tetrahedron. Both Cu(6)L(9) and M(16)L(24) cages are based on a cyclic helical M(3)L(3) subunit that can be considered as a triangular "panel", with the cages being constructed by interconnection of these (homochiral) panels with additional bridging ligands in different ways. Whereas [Cu(6)L(9)](BF(4))(12) is stable in solution (by electrospray mass spectrometry, ES-MS) and is rapidly formed by combination of Cu(BF(4))(2) and L in the correct proportions in solution, the hexadecanuclear cage [Cd(16)L(24)](BF(4))(32) formed on crystallization slowly rearranges in solution over a period of several weeks to the trigonal prism [Cd(6)L(9)](BF(4))(12), which was unequivocally identified on the basis of its (1)H NMR spectrum. Similarly, combination of Cd(BF(4))(2) and L in a 2:3 ratio generates a mixture whose main component is the trigonal prism [Cd(6)L(9)](BF(4))(12). Thus the hexanuclear trigonal prism is the thermodynamic product arising from combination of Cd(II) and L in a 2:3 ratio in solution, and arises from both assembly of metal and ligand (minutes) and rearrangement of the Cd(16) cage (weeks); the large cage [Cd(16)L(24)](BF(4))(32) is present as a minor component of a mixture of species in solution but crystallizes preferentially.  相似文献   

10.
Coupling reactions of allenylphosphonates (OCH(2)CMe(2)CH(2)O)P(O)CH=C=CRR' [R, R' = H (1a), R = H, R' = Me (1b), R = R' = Me (1c)] with aryl iodides, iodophenol, and iodobenzoic acid in the presence of palladium(II) acetate are investigated and compared with those of phenylallenes PhCH=C=CR2 [R = H (2a), Me (2b)] and allenyl esters EtO(2)CCH=C=CR(2) [R = H (2c), Me (2d)]. While 1b and 1c couple with different stereochemical outcomes using PhI in the presence of Pd(OAc)(2)/PPh(3)/K(2)CO(3) to give phenyl-substituted 1,3-butadienes, 1a does not undergo coupling but isomerizes to the acetylene (OCH(2)CMe(2)CH(2)O)P(O)CCMe (7). In the reaction of 1c with PhI, use of K(2)CO(3) affords the butadiene (Z)-(OCH(2)CMe(2)CH(2)O)P(O)CH=C(Ph)-C(Me)=CH(2) (12); in contrast, the use of Ag(2)CO(3) leads to the allene (OCH(2)CMe(2)CH(2)O)P(O)C(Ph)=C=CMe(2) (20), showing that these bases differ very significantly in their roles. The reaction of 1a with PhI or PhB(OH)2 in (t)he presence of Pd(OAc)2/CsF/DMF leads mainly to (E)-(OCH(2)CMe(2)CH(2)O)P(O)CH=C(Me)Ph (21) and (OCH(2)CMe(2)CH(2)O)P(O)CH2-C(Ph)=CH(2) (22) and is thus a net 1,2-addition of Ph-H. Compound 1b reacts with iodophenol in the presence of Pd(OAc)(2)/PPh(3)/K(2)CO(3) to give a benzofuran that has a structure different from that obtained by using 1c under similar conditions. Treatment of 1a with iodophenol/Pd(OAc)(2)/CsF/DMF also gives a benzofuran whose structure is different from that obtained by using 2a under similar conditions. In the reaction with 2-iodobenzoic acid, 1a and 2c afford one type of isocoumarin, while 1b,c and 2a,b give a second type of isocoumarin. The structures of key compounds are established by X-ray crystallography. Utility of the phosphonate products in the Horner-Wadsworth-Emmons reaction is demonstrated.  相似文献   

11.
2-Ammoniumethanethiolate, (-)SCH(2)CH(2)NH(3)(+), the first structurally characterized zwitterionic ammoniumthiolate, is the stable form of cysteamine (HL) in the solid state and in aqueous solution. Reactions of ZnCl(2), Cd(Oac)(2), and HgCl(2) with cysteamine and NaOH in a 1:2:2 ratio, respectively, lead to the homoleptic complexes ML(2). Their single-crystal X-ray structures demonstrate basic differences in the coordination chemistry of Zn(II), Cd(II), and Hg(II). While chelating N,S-coordination modes are found for all metal ions, Zn(II) forms a mononuclear complex with a distorted tetrahedral Zn(N(2)S(2)) coordination mode, whereas Hg(II) displays a dimer with Hg(N(2)S(2)) coordinated monomers being connected by two long Hg...S contacts. Solid-state (199)Hg NMR spectra of HgL(2) and [Hg(HL)(2)]Cl(2) reveal a low-field shift of the signals with increasing coordination number. Strong and nearly symmetric Cd-S-Cd bridges in solid CdL(2) lead to a chain structure, Cd(II) displaying a distorted square pyramidal Cd(N(2)S(3)) coordination mode. The ab initio [MP2/LANL2DZ(d,f)] structures of isolated ML(2) show a change from a distorted tetrahedral to bisphenoidal coordination mode in the sequence Zn(II)-Cd(II)-Hg(II). A natural bond orbital analysis showed a high ionic character for the M-S bonds and suggests that the S-M-S fragment is best described by a 3c4e bond. The strength of the M...N interactions and the stability of ML(2) toward decomposition to M and L-L decreases in the sequence Zn > Cd > Hg. Ab initio calculations further suggest that a tetrahedral S-M-S angle stabilizes Zn(II) against substitution by Cd(II) and Hg(II) in a M(N(2)S(2)) environment. Such geometry is provided in zinc-finger proteins, as was found by a database survey.  相似文献   

12.
The redox chemistry of tellurium-chalcogenide systems is examined via reactions of tellurium(IV) tetrachloride with Li[(t)()BuN(E)P(mu-N(t)Bu)(2)P(E)N(H)(t)Bu] (3a, E = S; 3b, E = Se). Reaction of TeCl(4) with 2 equiv of 3a in THF generates the tellurium(IV) species TeCl(3)[HcddS(2)][H(2)cddS(2)] 4a [cddS(2) = (t)BuN(S)P(mu-N(t)Bu)(2)P(S)N(t)Bu] at short reaction times, while reduction to the tellurium(II) complex TeCl(2)[H(2)cddS(2)](2) 5a is observed at longer reaction times. The analogous reaction of TeCl(4) and 3b yields only the tellurium(II) complex TeCl(2)[H(2)cddSe(2)](2) 5b. The use of 4 equiv of 3a or 3b produces Te[HcddE(2)](2) (6a (E = S) or 6b (E = Se)). NMR and EPR studies of the 5:1 reaction of 3a and TeCl(4) in THF or C(6)D(6) indicate that the formation of the Te(II) complex 6a via decomposition of a Te(IV) precursor occurs via a radical process to generate H(2)cddS(2). Abstraction of hydrogen from THF solvent is proposed to account for the formation of 2a. These results are discussed in the context of known tellurium-sulfur and tellurium-nitrogen redox systems. The X-ray crystal structures of 4a.[C(7)H(8)](0.5), 5a, 5b, 6a.[C(6)H(14)](0.5), and 6b.[C(6)H(14)](0.5) have been determined. The cyclodiphosph(V)azane dichalcogenide ligand chelates the tellurium center in an E,N (E = S, Se) manner in 4a.[C(7)H(8)](0.5), 6a.[C(6)H(14)](0.5), and 6b.[C(6)H(14)](0.5) with long Te-N bond distances in each case. Further, a neutral H(2)cddS(2) ligand weakly coordinates the tellurium center in 4a small middle dot[C(7)H(8)](0.5) via a single chalcogen atom. A similar monodentate interaction of two neutral ligands with a TeCl(2) unit is observed in the case of 5a and 5b, giving a trans square planar arrangement at tellurium.  相似文献   

13.
Treatment of the acyclic zwitterionic pentacoordinate silicate F(3)MeSiCH(2)NMe(2)H with 1 molar equiv of Me(3)SiOC(6)H(4)OSiMe(3), Me(3)SiOCH(2)C(O)OSiMe(3), Me(3)SiOC(Ph)=NOSiMe(3), or Me(3)SiOC(O)C(O)OSiMe(3) (solvent CH(3)CN, room temperature) yielded the respective monocyclic zwitterionic pentacoordinate silicates (11a), (12a), (13a), and (14a), along with 2 molar equiv of Me(3)SiF. The derivatives 11b-14b with a 2,2,6,6-tetramethylpiperidinio substituent instead of the dimethylammonio group were prepared analogously, starting from F(3)MeSiCH(2)NR(2)H (NR(2)H = 2,2,6,6-tetramethylpiperidinio). Single-crystal X-ray diffraction studies showed that the Si-coordination polyhedra of 11a.1.5CH(3)CN, 12a-14a, and 11b-14b are distorted trigonal bipyramids, the axial positions being occupied by the fluorine atom and one of the two oxygen atoms (12a/12b, carboxylate oxygen atom; 13a/13b, carbon-linked oxygen atom). These results are in agreement with the NMR data ((1)H, (13)C, (19)F, (29)Si) obtained for these compounds in solution. The chiral (C(1) symmetry) zwitterions 11a-14a and 11b-14b exist as pairs of (A)- and (C)-enantiomers in solution. VT (1)H NMR studies with 11b-14b in CH(3)CN in the temperature range 25-85 degrees C gave no indications for an enantiomerization process [(A)/(C)-enantiomerization] at the silicon atom.  相似文献   

14.
The OH stretching (nu(OH)) band of methanol observed in condensed phase has been analyzed in terms of hydrogen-bonding patterns. Quantum chemical calculations for methanol clusters have revealed that broadening of the nu(OH) envelope is reasonably reproduced by considering nearest and next-nearest neighbor interactions through hydrogen bonding. Because the hydrogen bond formed between donor (D) and acceptor (A) is cooperatively strengthened or weakened by a newly formed hydrogen bond at D or A, we have proposed the following notation for hydrogen-bonding patterns of monohydric alcohols: a(D)DAd(A)a(A), where a is the number of protons accepted by D (a(D)) or A (a(A)), and d(A) is the number of protons donated by A. The indicator of the hydrogen-bond strength, which is given by M(OH) = a(D) + d(A) - a(A), is correlated well with the nu(OH) wavenumber of the methanol molecule D participating in the a(D)DAd(A)a(A) pattern. The correlation between M(OH) and the hydrogen-bonding energy of the a(D)DAd(A)a(A) pattern has also been deduced from the calculation results for the clusters. The nu(OH) bands of methanol measured in the CCl4 solution and pure liquid have been successfully analyzed by the method proposed here.  相似文献   

15.
We have measured the photodissociation spectrum of CH(+) and CD(+) molecular ions, stored as fast (MeV) ion beams in the heavy-ion storage ring TSR. Several b (3)Sigma(-)-a (3)Pi bands were observed as strong resonances because a large fraction of the ions in the metastable a (3)Pi(v=0) state were pumped to b (3)Sigma(-) levels and predissociated via the c (3)Sigma(+) state into C(+) and H(D) fragments. From a rotational analysis of the 2-0, 3-0, and 4-0 bands in CH(+) and the 3-0 and 4-0 bands in CD(+), we derive spectroscopic constants for these levels and also revise a previous analysis of the 0-0 and 1-0 bands in CH(+). Combining all data delivers new, significantly adjusted equilibrium constants for the b (3)Sigma(-) and a (3)Pi electronic states. Apart from the spectroscopic analysis, we estimate the predissociation rates of the upper b (3)Sigma(-) vibrational levels in CH(+) and compare them to a model. For the initial rovibrational distribution of the stored metastable CH(+) molecules, the data indicate a faster vibrational cooling than derived before, and rotational cooling at a rate similar to the X (1)Sigma(+) ground state. New aspects of the spin-forbidden a (3)Pi-X (1)Sigma(+) radiative decay are discussed. Finally, we predict b (3)Sigma(-)-a (3)Pi absorption and a (3)Pi-X (1)Sigma(+) emission lines through which CH(+) in the metastable a (3)Pi(v=0) state might be detectable in astrophysical environments.  相似文献   

16.
The intermetallic compounds YbAu(2)In(4) and Yb(2)Au(3)In(5) were obtained as single crystals in high yield from reactions run in liquid indium. Single crystal X-ray diffraction data of YbAu(2)In(4) showed that it crystallizes as a new structure type in the monoclinic space group P2(1)/m and lattice constants a = 7.6536(19) ?, b = 4.5424(11) ?, c = 9.591(2) ? and β = 107.838(4)°. The YbAu(2)In(4) compound is composed of a complex [Au(2)In(4)](3-) polyanionic network in which the rare-earth ions are embedded. Yb(2)Au(3)In(5) crystallizes in the polar space group Cmc2(1) with the Y(2)Rh(3)Sn(5) type structure and lattice constants a = 4.5351(9) ?, b = 26.824(5) ?, and c = 7.4641(15) ?. The gold and indium atoms define a complex three-dimensional [Au(3)In(5)] network with a broad range of Au-In (2.751(2) ?-3.0518(16) ?) and In-In (3.062(3) ?-3.3024(19) ?) distances. Magnetic susceptibility measurements of YbAu(2)In(4) revealed a transition at 25 K. Below the transition, the susceptibility of YbAu(2)In(4) follows Curie-Weiss behavior with an effective paramagnetic moment of 0.79 μ(B)/Yb. Magnetic susceptibility measurements on Yb(2)Au(3)In(5) show a mixed valent ytterbium and the magnetic moment within the linear region (<100 K) of 1.95 μ(B)/Yb. Heat capacity data for YbAu(2)In(4) and Yb(2)Au(3)In(5) give Debye temperatures of 185 and 153 K, respectively.  相似文献   

17.
Izutsu K  Ohmaki M 《Talanta》1996,43(4):643-648
pH-ISFETs were used in the study of acid-base equilibria in gamma-butyrolactone (GBL). After the spectrophotometric determination of the pK(a) value of 3,5-dichloropicric acid, the pK(a) values and homo-conjugation constants of various acids (including the conjugate acids of bases) were determined potentiometrically using a Ta(2)O(5)-type pH-ISFET. The values of pK(a) in GBL were in a linear relation with those in propylene carbonate (PC) and 1.0 units smaller on average. The difference in pK(a) between GBL and PC was mainly attributable to the difference in proton solvation. The autoprotolysis constant of GBL, roughly estimated by a rapid titration with a Si(3)N(4)-ISFET, was about 30 on the pK(SH) scale. A comparative study was made of the response speeds of the Ta(2)O(5)- and Si(3)N(4)-type pH-ISFETs and a conventional pH-glass electrode. The result was Si(3)N(4)-ISFET > Ta(2)O(5)-ISFET > glass electrode. Because GBL is not stable against acids and bases, the use of pH-ISFETs was much more convenient than the use of the conventional glass electrode.  相似文献   

18.
Unique hetero(poly)metallic complexes [ClM(OAr)(3)Na] (M = Lu (3a), Y (3b)) and [ClY(OAr')(3)Y(OAr')(3)Na] (4) containing the bis (OAr = OC(6)H(2)(CH(2)NMe(2))(2)-2,6-Me-4) and mono (OAr' = OC(6)H(4)(CH(2)NMe(2))-2) o-amino-substituted phenolate ligands have been synthesized and characterized by NMR ((1)H, (13)C, and (89)Y) and X-ray structure determinations (3a and 4). Crystals of 3a are triclinic, space group P&onemacr;, with unit cell dimensions a = 10.706(1) ?, b = 14.099(2) ?, c = 18.882(3) ?, alpha = 93.48(1) degrees, beta = 99.49(1) degrees, gamma = 108.72(11) degrees, and Z = 2. The chlorine, lutetium, and sodium atoms in 3a lie on a pseudo-3-fold axis ( angleCl-Lu.Na = 177.82(5) degrees ) around which the three phenolate ligands are arranged in such a way that a "propeller-like" molecule with screw-type chirality results. Crystals of 4 are triclinic, space group P1, with unit cell dimensions a = 11.411(4) ?, b = 13.325(4) ?, c = 13.599(4) ?, alpha = 88.91(3) degrees, beta = 65.44(2) degrees, gamma = 72.77(3) degrees, and Z = 1. In 4 the chlorine, the two yttrium and the sodium atoms lie on a pseudo-3-fold axis (Cl-Y(1).Y(2).Na: angleCl-Y.Y = 179.36(8) degrees and angleY.Y.Na = 178.38(10) degrees ) around which the six phenolate ligands are arranged in two shells of three ligands. One shell bridges the yttrium atoms in an asymmetric fashion, while the second shell bridges the second yttrium and the sodium atom, resulting in two shells of opposite screw-type chirality. (1)H, (13)C, and (89)Y (for 3b and 4) NMR confirmed that the structures found for 3a and 4 in the solid state are retained in solution. For 4 (89)Y NMR showed two separate resonances (202.4 and 132.4 ppm), with (2)J(YY) = 0.4 Hz. The formation of 3a and 3b is described as resulting from positive cooperativity in anion-cation bonding: coordination of chloride anion to a neutral metal tris(phenolate) leads to preorganization of available binding sites in the resulting anionic complex for the binding of the sodium cation. In 4 this cooperativity is the driving force for the self-assembly of an anionic bimetallic molecular structure with available, preorganized binding sites for the capture of the cation. A proposal is made to use these observations for the possible synthesis of new coordination polymers.  相似文献   

19.
FTIR spectral changes of bovine cytochrome c oxidase (CcO) upon ligand dissociation from heme a(3)() and redox change of the Cu(A)-heme a moiety (Cu(A)Fe(a)()) were investigated. In a photosteady state under CW laser illumination at 590 nm to carbonmonoxy CcO (CcO-CO), the C-O stretching bands due to Fe(a3)()(2+)CO and Cu(B)(1+)CO were identified at 1963 and 2063 cm(-)(1), respectively, for the fully reduced (FR) state [(Cu(A)Fe(a)())(3+)Fe(a3)()(2+)Cu(B)(1+)] and at 1965 and 2061 cm(-)(1) for the mixed valence (MV) state [(Cu(A)Fe(a)())(5+)Fe(a3)()(2+)Cu(B)(1+)] in H(2)O as well as in D(2)O. For the MV state, however, another band due to Cu(B)(1+)CO was found at 2040 cm(-)(1), which was distinct from the alpha/beta conformers in the spectral behaviors, and therefore was assigned to the (Cu(A)Fe(a)())(4+)Fe(a3)()(3+)Cu(B)(1+)CO generated by back electron transfer. The FR-minus-oxidized difference spectrum in the carboxyl stretching region provided two negative bands at 1749 and 1737 cm(-)(1) in H(2)O, which were apparently merged into a single band with a band center at 1741 cm(-)(1) in D(2)O. Comparison of these spectra with those of bacterial enzymes suggests that the 1749 and 1737 cm(-)(1) bands are due to COOH groups of Glu242 and Asp51, respectively. A similar difference spectrum of the carboxyl stretching region was also obtained between (Cu(A)Fe(a)())(3+)Fe(a3)()(2+)Cu(B)(1+)CO and (Cu(A)Fe(a)())(5+)Fe(a3)()(2+)Cu(B)(1+)CO. The results indicate that an oxidation state of the (Cu(A)Fe(a)()) moiety determines the carboxyl stretching spectra. On the other hand, CO-dissociated minus CO-bound difference spectra in the FR state gave rise to a positive and a negative peaks at 1749 and 1741 cm(-)(1), respectively, in H(2)O, but mainly a negative peak at 1735 cm(-)(1) in D(2)O. It was confirmed that the absence of a positive peak is not caused by slow deuteration of protein. The corresponding difference spectrum in the MV state showed a significantly weaker positive peak at 1749 cm(-)(1) and an intense negative peak at 1741 cm(-)(1) (1737 cm(-)(1) in D(2)O). The spectral difference between the FR and MV states is explained satisfactorily by the spectral change induced by the electron back flow upon CO dissociation as described above. Thus, the changes of carboxyl stretching bands induced both by oxidation of (Cu(A)Fe(a)()) and dissociation of CO appear at similar frequencies ( approximately 1749 cm(-)(1)) but are ascribed to different carboxyl side chains.  相似文献   

20.
The syntheses and properties of tetra- and pentanuclear vanadium(IV,V) carboxylate complexes are reported. Reaction of (NBzEt(3))(2)[VOCl(4)] (1a) with NaO(2)CPh and atmospheric H(2)O/O(2) in MeCN leads to formation of (NBzEt(3))(2)[V(5)O(9)Cl(O(2)CPh)(4)] 4a; a similar reaction employing (NEt(4))(2)[VOCl(4)] (1b) gives (NEt(4))(2)[V(5)O(9)Cl(O(2)CPh)(4)] (4b). Complex 4a.MeCN crystallizes in space group P2(1)2(1)2(1) with the following unit cell dimensions at -148 degrees C: a = 13.863(13) ?, b = 34.009(43) ?, c = 12.773(11) ?, and Z = 4. The reaction between (NEt(4))(2)[VOBr(4)] (2a) and NaO(2)CPh under similar conditions gives (NEt(4))(2)[V(5)O(9)Br(O(2)CPh)(4)] (6a), and the use of (PPh(4))(2)[VOBr(4)] (2b) likewise gives (PPh(4))(2)[V(5)O(9)Br(O(2)CPh)(4)] (6b). Complex 6b crystallizes in space group P2(1)2(1)2(1) with the following unit cell dimensions at -139 degrees C: a = 18.638(3) ?, b = 23.557(4) ?, c = 12.731(2) ?, and Z = 4. The anions of 4a and 6b consist of a V(5) square pyramid with each vertical face bridged by a &mgr;(3)-O(2)(-) ion, the basal face bridged by a &mgr;(4)-X(-) (X = Cl, Br) ion, and a terminal, multiply-bonded O(2)(-) ion on each metal. The RCO(2)(-) groups bridge each basal edge to give C(4)(v)() virtual symmetry. The apical and basal metals are V(V) and V(IV), respectively (i.e., the anions are trapped-valence). The reaction of 1b with AgNO(3) and Na(tca) (tca = thiophene-2-carboxylate) in MeCN under anaerobic conditions gives (NEt(4))(2)[V(4)O(8)(NO(3))(tca)(4)] (7). Complex 7.H(2)O crystallizes in space group C2/c with the following unit cell dimensions at -170 degrees C: a = 23.606(4) ?, b = 15.211(3) ?, c = 23.999(5) ?, and Z = 4. The anion of 7 is similar to those of 4a and 6b except that the apical [VO] unit is absent, leaving a V(4) square unit, and the &mgr;(4)-X(-) ion is replaced with a &mgr;(4),eta(1)-NO(3)(-) ion. The four metal centers are now at the V(IV), 3V(V) oxidation level, but the structure indicates four equivalent V centers, suggesting an electronically delocalized system. Variable-temperature magnetic susceptibility data were collected on powdered samples of 4b, 6a, and 7 in the 2.00-300 K range in a 10 kG applied field. 4b and 6a both show a slow increase in effective magnetic moment (&mgr;(eff)) from approximately 3.6-3.7 &mgr;(B) at 320 K to approximately 4.5-4.6 &mgr;(B) at 11.0 K and then a slight decrease to approximately 4.2 &mgr;(B) at 2.00 K. The data were fit to the theoretical expression for a V(IV)(4) square with two exchange parameters J = J(cis)() and J' = J(trans)() (H = -2JS(i)()S(j)()): fitting of the data gave, in the format 4b/6a, J= +39.7/+46.4 cm(-)(1), J' = -11.1/-18.2 cm(-)(1) and g = 1.83/1.90, with the complexes possessing S(T) = 2 ground states. The latter were confirmed by magnetization vs field studies in the 2.00-30.0 K and 0.500-50.0 kG ranges: fitting of the data gave S(T) = 2 and D = 0.00 cm(-)(1) for both complexes, where D is the axial zero-field splitting parameter. Complex 7 shows a nearly temperature-independent &mgr;(eff) (1.6-2.0 &mgr;(B)) consistent with a single d electron per V(4) unit. The (1)H NMR spectra of 4b and 6a in CD(3)CN are consistent with retention of their pentanuclear structure on dissolution. The EPR spectrum of 7 in a toluene/MeCN (1:2) solution at approximately 25 degrees C yields an isotropic signal with a 29-line hyperfine pattern assignable to hyperfine interactions with four equivalent I = (7)/(2) (51)V nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号