首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
《Solid State Ionics》2006,177(19-25):1965-1968
The time-dependent degradation of anode-supported Solid Oxide Fuel Cells (SOFCs) with La0.58Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathodes has been studied. Eight SOFCs have been tested over a period of 1000 h under different operation conditions to investigate the influence of different operation parameters on the degradation of the electrochemical performance. The cells were tested at 700 or 800 °C, at 0.3 or 0.6 A/cm2 and with 21% or 5% O2 at the cathode side and showed performance losses of 2–4% per 1000 h. While an elevated temperature and an elevated oxygen partial pressure had a negative influence on long-term performance, the current density did not have a clear effect. Material analysis of the cells showed a formation of SrZrO3 at the interface of the Ce0.8Gd0.2O2−δ interlayer and the yttria stabilized zirconia (8YSZ) electrolyte during sintering of the cathode. There are indications of a further formation of this phase during the electrochemical characterization obtained from X-ray diffraction analysis on LSCF–YSZ powder mixtures that were exposed to 800 °C for 200 h.  相似文献   

2.
A large difference in thermal expansion coefficient of electrode and electrolyte leads to imperfect electrode/electrolyte interface and hence significant polarization losses in solid oxide fuel cells. To overcome the difficulties associated with electrode and electrode/electrolyte interface, there is need to fabricate the composite cathode. Thus the present paper deals with study of La0.6Sr0.4Co0.2Fe0.8O3−δ(LSCF)–Ce0.9Gd0.1O1.95(GDC) nanocomposite with different fractions of GDC obtained by physical mixing of combustion synthesized nanopowders. No secondary phases were observed upon sintering at 1100 °C for 2 h affirming the chemical compatibility between LSCF and GDC. The composites with relatively high GDC% have higher density as a consequence of rapid grain growth and less conductivity. The nanocomposite with 50% of GDC showed electric conductivity of 30 Scm−1 at 500 °C and low area specific resistance of 106 Ω cm2 with 10 μs relaxation time at 200 °C.  相似文献   

3.
Doped lanthanum manganese chromite based perovskite, La0.7A0.3Cr0.5Mn0.5O3 ? δ (LACM, A = Ca, Sr, Ba), on yttria-stabilized zirconia (YSZ) electrolyte is investigated as potential electrode materials for solid oxide fuel cells (SOFCs). The electrical conductivity and electrochemical activity of LACM depend on the A-site dopant. The best electrochemical activity is obtained on the La0.7Ca0.3Cr0.5Mn0.5O3 ? δ/YSZ (LCCM/YSZ) composite electrodes. The conductivity of LCCM is 29.9 S cm? 1 at 800 °C in air, and the electrode polarization resistance (RE) of the LCCM/YSZ composite cathode for the O2 reduction reaction is 0.5 Ω cm2 at 900 °C. The effect of Gd-doped ceria (GDC) impregnation on the LCCM cathode polarization resistances is also studied. GDC impregnation significantly enhances the electrochemical activity of the LCCM cathode. In the case of the 6.02 mg cm? 2 GDC-impregnated LCCM cathode, RE is 0.4 Ω cm2 at 800 °C, ~ 60 times smaller than 24.4 Ω cm2 measured on a LCCM cathode without the GDC impregnation. Finally the electrochemical activities of the doped lanthanum manganese chromites for the H2 oxidation reaction are also investigated.  相似文献   

4.
《Solid State Ionics》2006,177(19-25):2065-2069
Novel Ni–Al2O3 cermet-supported tubular SOFC cell was fabricated by thermal spraying. Flame-sprayed Al2O3–Ni cermet coating played dual roles of a support tube and an anode current collector. Y2O3-stabilized ZrO2 (YSZ) electrolyte was deposited by atmospheric plasma spraying (APS) to aim at reducing manufacturing cost. The gas tightness of APS YSZ coating was achieved by post-densification process. The influence of YSZ coating thickness on the performance of SOFC test cell was investigated in order to optimize YSZ thickness in terms of open circuit voltage of the cell and YSZ ohmic loss. It was found that the reduction of YSZ thickness from 100 μm to 40 μm led to the increase of the maximum output power density from 0.47 W/cm2 to 0.76 W/cm2 at 1000 °C. Using an APS 4.5YSZ coating of about 40 μm as the electrolyte, the test cell presented a maximum power output density of over 0.88 W/cm2 at 1030 °C. The results indicate that SOFCs with thin YSZ electrolyte require more effective cathode and anode to improve performance.  相似文献   

5.
A thin interlayer of samarium doped ceria (SDC) is applied as diffusion barrier between La1 ? xSrxCoyFe1 ? yO3 x = 0.1–0.4, y = 0.2–0.8 (LSCF) cathode and La1.8Dy0.2Mo1.6W0.4O9 (LDMW82) electrolyte to obstruct Mo–Sr diffusion and solid state reaction in the intermediate temperature range of SOFC. We demonstrate the effectiveness of the diffusion barrier through contrasting the clearly defined interfaces of LSCF/SDC/LDMW82 against a rugged growing product layer of LSCF/LDMW82 in 800 °C thermal annealing, and analyze the product composition and the probable new phase. In addition, the measured polarization resistance is considerably lower for the half-cell with a diffusion barrier. Therefore, the electrochemical performance of the LSCF cathode is investigated on the SDC-protected LDMW82. The cell with LSCF (x = 0.4) persistently outperforms the one with x = 0.2 in polarization resistance because of its small low-frequency contribution. The activation energy of polarization resistance is also lower for La0.6Sr0.4CoyFe1 ? yO3 (112–135 kJ/mol), than that for La0.8Sr0.2CoyFe1 ? yO3 (156–164 kJ/mol). La0.6Sr0.4CoyFe1 ? yO3 y = 0.4–0.8 is the proper composition for the cathode interfaced to SDC/LDMW82.  相似文献   

6.
Metal-supported solid oxide fuel cells (SOFCs) are promising due to their good mechanical and thermal properties. Stainless steels are often used as a supporting metal. In this study, the possible use of Ni as a supporting metal was tested. Ni is also a good model of supporting metal due to its lack of Cr which poisons Ni anode.YSZ electrolyte and Ni-YSZ anode were coated on a porous Ni support to fabricate Ni-supported SOFC. A porous Ni support in thick-film form (t ~ 150 µm) was prepared by the mold casting of Ni powders. An anode and an electrolyte layer were sequentially coated on the Ni support using screen printing and tape casting methods, respectively. The Ni-supported cell (t ~ 200 µm) was sintered at 1400 °C in a reducing atmosphere and the performance was evaluated at 800 °C with a La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode. The unit cell showed an open circuit voltage (OCV) of 0.96 V and a peak power density of 470 mW/cm2 at 800 °C.  相似文献   

7.
《Solid State Ionics》2006,177(19-25):1843-1848
The electrochemical performance of La0.58Sr0.4Co0.2Fe0.8O3−δ (L58SCF), La0.9Sr1.1FeO4−δ (LS2F) and LSM (La0.65Sr0.3MnO3−δ)/LSM–YSZ (50 wt.% LSM–50 wt.% ZrO2 (8 mol% Y2O3)) cathode electrodes interfaced to a double layer Ce0.8Gd0.2O2−δ (CGO)/YSZ electrolyte was studied in the temperature range of 600 to 850 °C and under flow of 21% O2/He mixture, using impedance spectroscopy and current density–overpotential measurements. The L58SCF cathode exhibited the highest electrocatalytic activity for oxygen reduction, according to the order: LS2F/CGO/YSZ  LSM/LSM–YSZ/CGO/YSZ < L58SCF/CGO/YSZ.  相似文献   

8.
《Solid State Ionics》2006,177(35-36):3187-3191
The electrochemical properties of geometrically well-defined Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) microelectrodes have been investigated by impedance spectroscopy. The microelectrodes of 20–100 μm diameter and 100 nm thickness were prepared by pulsed laser deposition (PLD), photolithography and argon ion beam etching. The oxygen reduction reaction at these model electrodes is limited by interfacial processes, i.e. by the oxygen surface exchange and/or by the transfer of oxide ions across the electrode/electrolyte boundary, whereas the resistance associated with the transport of oxide ions through the bulk of the thin film electrode is negligible. The experiments revealed an extremely low absolute value of the electrochemical surface exchange resistance of only 0.09 (± 0.03) Ω cm2 at 750 °C in air, which is more than a factor of 50 lower than the corresponding value measured for La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF) microelectrodes of the same geometry. The dependence of this and other electrochemical quantities such as the chemical bulk capacitance or the BSCF/YSZ interfacial resistance on temperature has been studied between 500 and 750 °C.  相似文献   

9.
Nickel anodes were deposited on hollow fibre yttria-stabilised zirconia (YSZ) electrolyte substrates for use in solid oxide fuel cells (SOFCs). The hollow fibres are characterised by porous external and internal surfaces supported by a central gas-tight layer (300 μm total wall thickness and 1.6 mm external diameter). The YSZ hollow fibres were prepared by a phase inversion technique followed by high temperature sintering in the range 1200 to 1400 °C. Ni anodes were deposited on the internal surface by electroless plating involving an initial catalyst deposition step with PdCl2 followed by Ni plating (with a NiSO4, NaH2PO2 and sodium succinate based solution at 70 °C). Fabrication and nickel deposition parameters (nature of solvents, air gap, temperature, electroless bath composition) and heat treatments in oxidising/reducing environments were investigated in order to improve anode and electrolyte microstructure and fuel cell performance. A parallel study of the effect of YSZ sintering temperature, which influences electrolyte porosity, on electrolyte/anode microstructure was performed on mainly dense discs (2.3 mm thick and 15 mm diameter). Complete cells were tested with both disc and hollow fibre design after a La0.2Sr0.8Co0.8Fe0.2O3?δ (LSCF) cathode was deposited by slurry coating and co-fired at 1200 °C. Anodes prepared by Ni electroless plating on YSZ electrolytes (discs and hollow fibres) sintered at lower temperature (1000–1200 °C) benefited from a greater Ni penetration compared to electrolytes sintered at 1400 °C. Further increases in anode porosity and performance were achieved by anode oxidation in air at 1200–1400 °C, followed by reduction in H2 at 800 °C.  相似文献   

10.
《Solid State Ionics》2006,177(26-32):2261-2267
Yttria-stabilized zirconia (YSZ) can be used as an oxygen-permeating membrane at elevated temperature (> 1400 °C) due to its chemical and mechanical stability. It was previously shown that the oxygen transport through YSZ membrane in reducing oxygen partial pressure (PO2) was highly influenced by the surface-exchange kinetics that can be improved by porous surface coating layers such as YSZ, GDC (Gd-doped ceria) or YSZ–GDC mixture [H.J. Park, G.M. Choi, J. Eur. Ceram. Soc. 25 (2005) 2577]. However, the increased oxygen flux was still lower than that estimated assuming bulk-diffusion limit and rapidly decreased with time due to the sintering of coating layers and the reaction between bulk YSZ and coating layers. In this study, the oxygen fluxes through YSZ with LaCrO3, GDC + LaCrO3 (bilayer), LaCrO3 + 5 wt.% GDC (mixture), or LaCr0.7Co0.3O3 coatings were measured under controlled PO2 gradient (permeate-side PO2: ∼ 3 × 10 12 atm, feed-side PO2: 2 × 10 10–2 × 10 8 atm) at 1600 °C. The oxygen flux drastically increased with these coatings. The highest increase in oxygen flux was shown with GDC + LaCrO3 (bilayer) coating and was maintained for a long time. The presence of highly catalytic Ce ions while maintaining porous structure in the coating layer may explain the observation. The prevention of formation of resistive layer due to ceria coating may also be partly responsible for the observation.  相似文献   

11.
YSr2Fe3O8 − δ was prepared by traditional solid state reaction method and characterized by X-ray diffraction, ac impedance, dc conductivity, dilatometry and thermogravimetric analysis for possible use in solid oxide fuel cells (SOFCs). YSr2Fe3O8 − δ crystallizes with tetragonal symmetry in the space group P4/mmm and found to be stable at high temperatures under H2 and air. Four probe dc electrical conductivity measurements show that the conductivity increases up to 745 K and then decreases with temperature; the highest conductivity σ745K = 43.5 S cm− 1. The n-type conductivity at low oxygen partial pressure (pO2) changes to p-type at high pO2. Polarization behavior was investigated measuring the ac impedance response in symmetrical cell arrangements in air with YSZ and GDC electrolytes. Cathodic area specific resistance (ASR) varies with firing temperature. The lowest area specific resistance was observed with a GDC electrolyte fired at 1000 °C. In case of YSZ, ASR increases and in case of GDC, ASR decreases in air when electrode firing temperature decreases. At 800 °C ASRs are 0.20 Ω cm2 and 0.65 Ω cm2 with GDC and YSZ electrolytes, respectively, in air. Fuel cell measurements with symmetrical electrodes were performed using a thin YSZ electrolyte under H2 at anode and air at cathode, show that the power density is about 0.035 W/cm2 at 900 °C.  相似文献   

12.
As for the commonly studied La0.6Sr0.4Co0.2Fe0.8O3-δ (6428), here, a very low area-specific resistance (ASR) was measured for La0.6Sr0.4Co0.8Fe0.2O3-δ (6482) cathode deposited on a Ce0.9Gd0.1O2-δ (GDC) electrolyte with addition of a thin (1 μm) dense LSCF film deposited by spin coating at the interface between the GDC electrolyte and a 40-μm-thick screen-printed electrode. The ASR ranged from 1 Ω.cm2 at 500 °C, 0.11 Ω.cm2 at 625 °C and value as low as 0.03 Ω.cm2 at 700 °C. Impedance spectra collected in between 500 and 700 °C were carefully studied. They could all be modelled with two R//CPE in series which are likely associated to the oxygen reduction reaction itself (dissociation/adsorption/ionization) at low frequency and to the oxide ion transfer at the electrode/electrolyte interface at high frequency.  相似文献   

13.
Azad J. Darbandi  Horst Hahn   《Solid State Ionics》2009,180(26-27):1379-1387
Nanocrystalline La0.6Sr0.4Co0.2Fe0.8O3 − δ (LSCF) and La0.25Ba0.25Sr0.5Co0.2Fe0.8O3 − δ (LBSCF) with a high specific surface area (~ 40 m²/g) were synthesized by spray pyrolysis. The as prepared powder was characterized by X-ray diffraction, nitrogen adsorption, and high-resolution electron microscopy. Water-based dispersions of pure LSCF, LBSCF and mixtures containing gadolinium doped ceria (GDC) with agglomerate sizes of approx. 50 nm were prepared by application of ultrasonic energy. Spin coating was employed to prepare porous thin films. The thickness of the films (≤1 μm) was more than 10–20 times lower than conventional cathode layers. The interfacial polarization resistances of LBSCF cathodes are 19, 38, and 101 mΩ cm2 at 650, 600, and 550 °C, respectively. The high performance is attributed to the nanometer-sized grain dimensions, the nanoporosity, and the large specific surface area within the cathode layer. The novel approach of preparing nanoparticulate thin film cathodes suggests strong benefit for Micro Solid Oxide Fuel Cells operating below 500 °C.  相似文献   

14.
Ni-containing anode is currently used with many electrolytes of solid oxide fuel cells (SOFCs). However, Ni is easily oxidized and deteriorates the LaGaO3-based electrolyte. A La-doped SrTiO3 (LST, La0.2Sr0.8TiO3) is a candidate as an anode material to solve the Ni poisoning problem in LaGaO3-based SOFC. In this study, a single-phase LST and an LST-Gd0.2Ce0.8O2 ? δ (GDC) composite were tested as the possible anodes on La0.9Sr0.1Ga0.8Mg0.2O3 ? δ (LSGM) electrolyte. In order to further improve the anodic performance, Ni was impregnated into the LST-GDC composite anode. The performance was examined from 600 °C to 800 °C by measuring impedance of the electrolyte-supported, symmetric (anode/electrolyte/anode) cells. A polarization resistance (Rp) of LST-GDC anode was much reduced from that of LST anode. When Ni was impregnated into LST-GDC composite, the Rp value was further reduced to ~ 10% of the single-phase LST anode, and it was 1 Ωcm2 at 800 °C in 97% H2 + 3% H2O atmosphere. A single cell with Ni-impregnated LST-GDC as an anode, Ba0.5Sr0.5Co0.8Fe0.2O3 ? δ (BSCF) as a cathode and LSGM as an electrolyte exhibited the maximum power density of 275 mW/cm2 at 800 °C, increased from ~ 60 mW/cm2 for the cell using the LST-GDC as an anode. Thus, LST-GDC composite is promising as a component of anode.  相似文献   

15.
Yanhai Du  Nigel Sammes 《Ionics》2003,9(1-2):7-14
Yttria stabilized zirconia (YSZ) is the most commonly used electrolyte material in solid oxide fuel cells (SOFC’s). However, doped lanthanum gallate is an interesting alternative for use at intermediate temperatures (typically 600 – 750 °C). Commercially available La0.8Sr0.2Ga0.8Mg0.2O2.8 (LSGM) powder was mixed with a polymer-based binder system and extruded into two different size tubes. After sintering, the electrolyte tubes were approximately (a) 6 mm outside diameter, 0.55 mm wall thickness and 100–200 mm long and (b) 4 mm outside diameter, 0.22 mm wall thickness and 50–100 mm long. The tubes were then fabricated into SOFC’s, using a range of anode and cathode morphologies. The electrical performance of the cells was then tested using hydrogen as a fuel. A repeatable and constant power of over 2.5 W per cell was obtained at 800 °C and 0.7 V. The maximum power density of the tubular fuel cell with La0.6Sr0.4CoO3 cathode, Ce0.8Sm0.2O1.9 interlayer and a Ni anode was 482 mW/cm2. This paper will present the fabrication procedure and parameters, fuel cell performance test results, and the effect of electrode morphologies on the performance of the fuel cells. Paper presented at the 9th EuroConference on Ionics, Ixia, Rhodes, Greece, Sept. 15 – 21, 2002.  相似文献   

16.
《Solid State Ionics》2009,180(40):1672-1682
The double perovskite Sr2MgMoO6  δ (SMM) has been proposed as a potential anode material for direct hydrocarbon oxidation in solid oxide fuel cells (SOFCs). The oxygen nonstoichiometry and electrical conductivity dependence of Sr2MgMoO6  δ have been determined as a function of the oxygen partial pressure by coulometric titration and impedance spectroscopy techniques. The chemical compatibility of Sr2MgMoO6  δ with most of the typical electrolytes commonly used in SOFCs i.e. La0.8Sr0.2Ga0.8Mg0.2O3  δ (LSGM), Ce0.8Gd0.2O2  δ (CGO) and Zr0.84Y0.16O2  δ (YSZ), was investigated. Reactivity between SMM and all these electrolytes has been found above 1000 °C, although the reaction is most severe with ZrO2-based electrolytes. Area-specific polarisation resistance of the SMM/LSGM/SMM symmetrical cells indicates that the polarisation resistance increases with the firing temperature of the electrodes due to chemical interaction between LSGM and SMM layers. A CGO buffer layer between the anode and electrolyte was also used to prevent an excessive interdiffusion of ionic species between these components, resulting in better performance. Power densities of 330 and 270 mW cm 2 were reached at 800 °C for SMM/CGO/LSGM/LSCF and SMM/LSGM/LSCF electrolyte-supported cells, respectively; with 600-μm-thick LSGM electrolyte, using humidified H2 as fuel and air as oxidant. XPS and XRPD studies on SMM powders annealed in air and diluted CH4 atmospheres showed that the surface of SMM powders is mainly formed by SrMoO4 and metal carbonates.  相似文献   

17.
The catalytic and electrocatalytic behaviour of the La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) perovskite deposited on yttria stabilized zirconia (YSZ), was studied during the reaction of methane oxidation. Experiments were carried out at atmospheric pressure, and at temperatures between 600 and 900 °C. When, instead of cofeeding with methane in the gas phase, oxygen was electrochemically supplied as O2−, considerable changes in the methane conversion and product selectivity were observed. The non-faradaic effects (NEMCA) were also studied and compared to those observed with metal catalysts. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

18.
Partial electronic conductivity and total conductivity have been determined by Hebb-Wagner polarization method and a.c. impedance spectroscopy, respectively, on bilayer electrolyte Zr0.84Y0.16O1.92(YSZ)/Ce0.9Gd0.1O1.95(GDC) with thickness ratios 10− 3/1 and 10− 4/1 at 800°, 900° and 1000 °C, respectively. While their ionic conductivities remain close to that of GDC, the electronic conductivities are suppressed the more from that of GDC towards that of YSZ the higher the thickness ratio, as expected. Even when the GDC-side is exposed to reducing atmosphere, the electronic conductivity is also suppressed, but to a less extent. It is suggested that oxygen activity distribution is discontinuous across the YSZ/GDC interface under ion-blocking condition, refuting the “continuity hypothesis” that has been usually adopted in calculating the oxygen activity distribution across a multilayer of mixed conductor oxides. The electrolytic domain widths of the bilayer electrolyte are reported depending on temperature, thickness ratio and direction of oxygen activity gradient imposed.  相似文献   

19.
《Solid State Ionics》2006,177(13-14):1205-1210
A comparative investigation of the much-studied La2NiO4+δ (n = 1) phase and the higher-order Ruddlesden-Popper phases, Lan+1NinO3n+1 (n = 2 and 3), has been undertaken to determine their suitability as cathodes for intermediate-temperature solid-oxide fuel cells. As n is increased, a structural phase transition is observed from tetragonal I4/mmm in the hyperstoichiometric La2NiO4.15 (n = 1) to orthorhombic Fmmm in the oxygen-deficient phases, La3Ni2O6.95 (n = 2) and La4Ni3O9.78 (n = 3). High temperature d.c. electrical conductivity measurements reveal a dramatic increase in overall values from n = 1, 2 to 3 with metallic behavior observed for La4Ni3O9.78. Impedance spectroscopy measurements on symmetrical cells with La0.9Sr0.10Ga0.80Mg0.20O3−δ (LSGM-9182) as the electrolyte show a systematic improvement in the electrode performance from La2NiO4.15 to La4Ni3O9.78 with ∼ 1 Ω cm2 observed at 1073 K for the latter. Long-term thermal stability tests show no impurity formation when La3Ni2O6.95 and La4Ni3O9.78 are heated at 1123 K for 2 weeks in air, in contrast to previously reported data for La2NiO4.15. The relative thermal expansion coefficients of La3Ni2O6.95 and La4Ni3O9.78 were found to be similar at ∼ 13.2 × 10 6 K 1 from 348 K to 1173 K in air compared to 13.8 × 10 6 K 1 for La2NiO4.15. Taken together, these observations suggest favourable use for the n = 2 and 3 phases as cathodes in intermediate-temperature solid-oxide fuel cells when compared to the much-studied La2NiO4+δ (n = 1) phase.  相似文献   

20.
《Solid State Ionics》2006,177(19-25):1949-1953
Partial electronic and oxide ionic conduction in LaGaO3 doped with Sr and Mg, Co for Ga site was studied with the ion blocking method. It was found that doping small amount of Co into Ga site is effective for elevating the oxide ion conductivity. However, it is seen that the partial electronic conduction monotonically increases with increasing Co amount and PO2 at p–n transition was shifted to lower value. Even at X = 0.1, the oxide ion conductivity in LSGMC is still dominant. Calculation on the theoretical leakage of electrolyte of solid oxide fuel cells suggests that the highest efficiency of the electrolyte was achieved around 100 μm in thickness for La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 (LSGMC). Preparation of LSGMC film on Ni–Sm0.2Ce0.8O2 porous anode was studied with the colloidal spray method. In order to prevent the reaction between substrate and film, La doped CeO2 was used for the interlayer film. In accordance with the theoretical calculation, open circuit potential of the cell using LSGMC film electrolyte with 40 μm thickness becomes much smaller than the theoretical value. However, fairly large maximum power density (0.21 W/cm2) can be achieved at 873 K and even at 773 K, the maximum power density of the cell as high as 0.12 W/cm2 was exhibited on the SOFC using 40 μm thickness LSGMC electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号