首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Performance of La-doped strontium titanate (LST) anode on LaGaO3-based SOFC
Authors:Kyung Bin Yoo  Gyeong Man Choi
Institution:Fuel Cell Research Center and Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea
Abstract:Ni-containing anode is currently used with many electrolytes of solid oxide fuel cells (SOFCs). However, Ni is easily oxidized and deteriorates the LaGaO3-based electrolyte. A La-doped SrTiO3 (LST, La0.2Sr0.8TiO3) is a candidate as an anode material to solve the Ni poisoning problem in LaGaO3-based SOFC. In this study, a single-phase LST and an LST-Gd0.2Ce0.8O2 ? δ (GDC) composite were tested as the possible anodes on La0.9Sr0.1Ga0.8Mg0.2O3 ? δ (LSGM) electrolyte. In order to further improve the anodic performance, Ni was impregnated into the LST-GDC composite anode. The performance was examined from 600 °C to 800 °C by measuring impedance of the electrolyte-supported, symmetric (anode/electrolyte/anode) cells. A polarization resistance (Rp) of LST-GDC anode was much reduced from that of LST anode. When Ni was impregnated into LST-GDC composite, the Rp value was further reduced to ~ 10% of the single-phase LST anode, and it was 1 Ωcm2 at 800 °C in 97% H2 + 3% H2O atmosphere. A single cell with Ni-impregnated LST-GDC as an anode, Ba0.5Sr0.5Co0.8Fe0.2O3 ? δ (BSCF) as a cathode and LSGM as an electrolyte exhibited the maximum power density of 275 mW/cm2 at 800 °C, increased from ~ 60 mW/cm2 for the cell using the LST-GDC as an anode. Thus, LST-GDC composite is promising as a component of anode.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号