首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Solid State Ionics》2006,177(9-10):833-842
The phase stability, oxygen stoichiometry and expansion properties of SrCo0.8Fe0.2O3−δ (SCF) were determined by in situ neutron diffraction between 873 and 1173 K and oxygen partial pressures of 5 × 10 4 to 1 atm. At a pO2 of 1 atm, SCF adopts a cubic perovskite structure, space group Pmm, across the whole temperature range investigated. At a pO2 of 10 1 atm, a two-phase region exists below 922 K, where the cubic perovskite phase coexists with a vacancy ordered brownmillerite phase, Sr2Co1.6Fe0.4O5, space group Icmm. A pure brownmillerite phase is present at pO2 of 10 2 and 5 × 10 4 atm below 1020 K. Above 1020 K, the brownmillerite phase transforms to cubic perovskite through a two-phase region with no brownmillerite structure observed above 1064 K. Large distortion of the BO6 (B = Co, Fe) octahedra is present in the brownmillerite structure with apical bond lengths of 2.2974(4) Å and equatorial bond lengths of 1.9737(3) Å at 1021 K and a pO2 of 10 2 atm. SCF is highly oxygen deficient with a maximum oxygen stoichiometry, 3  δ, measured in this study of 2.58(2) at 873 K and a pO2 of 1 atm and a minimum of 2.33(2) at 1173 K and a pO2 of 5 × 10 4 atm. Significant differences in lattice volume and expansion behavior between the brownmillerite and cubic perovskite phases suggest potential difficulties in thermal cycling of SrCo0.8Fe0.2O3−δ membranes.  相似文献   

2.
《Solid State Ionics》2006,177(19-25):1757-1760
The oxygen ion and electron transport in SrFe1−xScxO3−δ  (x = 0.1–0.3) system at 700–950 °C were studied analyzing the total conductivity dependencies on the oxygen partial pressure, pO2. The conductivity measurements were performed both under reducing conditions (10 19  pO2  10 8 atm) comprising the electron-hole equilibrium point, and in oxidizing atmospheres (10 5  pO2  0.5 atm) which are characterized by extensive variations of the oxygen content studied by coulometric titration technique. The incorporation of 10% Sc3+ cations into the iron sublattice suppresses transition of the cubic perovskite phase into vacancy-ordered brownmillerite, thus improving ion conduction at temperatures below 850 °C. When scandium content increases, the ion conductivity becomes considerably lower. The hole mobility is thermally-activated and varies in the range of 0.001 to 0.05 cm2 V 1 s 1, increasing with oxygen concentration and decreasing on Sc doping.  相似文献   

3.
《Solid State Ionics》2006,177(19-25):1737-1742
High temperature X-ray diffraction (HT-XRD), temperature programmed desorption (TPD), thermogravimetric analysis–differential thermal analysis (TGA/DTA) and neutron diffraction were combined to determine the structure and oxygen stoichiometry of SrCo0.8Fe0.2O3−δ (SCF) and Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) up to 1273 K in the pO2 range of 1 to 10 5 atm. Formation of the vacancy-ordered brownmillerite phase, SrCo0.8Fe0.2O2.5, was observed as a region of zero oxygen release in the TPD measurements and confirmed by HT-XRD and TGA/DTA. No ordering was observed in the BSCF system by any of the techniques utilized in this work. The oxygen vacancy concentration of BSCF was found to be considerably higher than that of SCF and always higher than that of the ordered brownmillerite phase of SCF, δ = 0.5. The combination of a high vacancy concentration and absence of ordering leads to higher oxygen permeation fluxes through BSCF membranes in comparison to SCF.  相似文献   

4.
《Solid State Ionics》2006,177(5-6):549-558
Perovskite-type LaGa0.65Mg0.15Ni0.20O3−δ exhibiting oxygen transport comparable to that in K2NiF4-type nickelates was characterized as a model material for ceramic membrane reactors, employing mechanical tests, dilatometry, oxygen permeability and faradaic efficiency measurements, thermogravimetry (TG), and determination of the total conductivity and Seebeck coefficient in the oxygen partial pressure range from 10 15 Pa to 40 kPa. Within the phase stability domain which is similar to La2NiO4+δ, the defect chemistry of LaGa0.65Mg0.15Ni0.20O3−δ can be adequately described by the ideal solution model with oxygen vacancies and electron holes to be the only mobile defects, assuming that Ni2+ may provide two energetically equivalent sites for hole location. This assumption is in agreement with the density of states, estimated from thermopower, and the coulometric titration and TG data suggesting Ni4+ formation in air at T < 1150 K. The hole conductivity prevailing under oxidizing conditions occurs via small-polaron mechanism as indicated by relatively low, temperature-activated mobility. The ionic transport increases with vacancy concentration on reducing p(O2) and becomes dominant at oxygen pressures below 10 7–10 5 Pa. The average thermal expansion coefficients in air are 11.9 × 10 6 and 18.4 × 10 6 K 1 at 370–850 and 850–1270 K, respectively. The chemical strain of LaGa0.65Mg0.15Ni0.20O3−δ ceramics at 1073–1123 K, induced by the oxygen partial pressure variations, is substantially lower compared to perovskite ferrites. The flexural strength determined by 3-point and 4-point bending tests is 167–189 MPa at room temperature and 85–97 MPa at 773–1173 K. The mechanical properties are almost independent of temperature and oxygen pressure at p(O2) = 1–2.1 × 104 Pa and 773–1173 K.  相似文献   

5.
《Solid State Ionics》2006,177(19-25):1725-1728
Apatite-type La10  xSi6  yAlyO27  3x/2  y/2 (x = 0–0.33; y = 0.5–1.5) exhibit predominant oxygen ionic conductivity in a wide range of oxygen partial pressures. The conductivity of silicates containing 26.50–26.75 oxygen atoms per formula unit is comparable to that of gadolinia-doped ceria at 770–870 K. The average thermal expansion coefficients are (8.7–10.8) × 10 6 K 1 at 373–1273 K. At temperatures above 1100 K, silicon oxide volatilization from the surface layers of apatite ceramics and a moderate degradation of the ionic transport with time are observed under reducing conditions, thus limiting the operation temperature of Si-containing solid electrolytes.  相似文献   

6.
《Solid State Ionics》2006,177(26-32):2269-2273
Iron-doped Pr2Ni0.8Cu0.2O4 was studied as a new mixed electronic and oxide-ionic conductor for use as an oxygen-permeating membrane. An X-ray diffraction analysis suggested that a single phase K2NiF4-type structure was obtained in the composition range from x = 0 to 0.05 in Pr2Ni0.8  xCu0.2FexO4. It is considered that the doped Fe is partially substituted at the Ni position in Pr2NiO4. The prepared Pr2NiO4-based oxide exhibited a dominant hole conduction in the PO2 range from 1 to 10 21 atm. The electrical conductivity of Pr2Ni0.8−xCu0.2FexO4 is as high as 102 S cm 1 in the temperature range of 873–1223 K and it gradually decreased with the increasing amount of Fe substituted for Ni. The oxygen permeation rate was significantly enhanced by the Fe doping and it was found that the highest oxygen permeation rate (60 μmol min 1 cm 2) from air to He was achieved for x = 0.05 in Pr2Ni0.8  xCu0.2FexO4. Since the chemical stability of the Pr2NiO4-based oxide is high, Pr2Ni0.75Cu0.2Fe0.05O4 can be used as the oxygen-separating membrane for the partial oxidation of CH4. It was observed that the oxygen permeation rate was significantly improved by changing from He to CH4 and the observed permeation rate reached a value of 225 μmol min 1 cm 2 at 1273 K for the CH4 partial oxidation.  相似文献   

7.
《Solid State Ionics》2006,177(26-32):2285-2289
Oxygen-ionic and electronic transport in dense (SrFe)1−x(SrAl2)xOz composites, consisting of strontium-deficient Sr(Fe,Al)O3-δ and SrAl2O4 phases, is determined by the properties of perovskite-like solid solution. Increasing the content of SrAl2O4, with a total conductivity as low as 5 × 10 7   10 S × cm 1 at 973–1273 K in air, results in the gradual decrease of the partial conductivities, but also enables the suppression of thermal expansion. Compared to single-phase SrFe1−xAlxO3-δ, (SrFe)1−x(SrAl2)xOz composites exhibit enhanced thermomechanical properties, while the oxygen permeability of these materials has similar values. The composite membranes exhibit stable performance under air/(H2–H2O–N2) and air/(CH4–He) gradients at 973–1173 K. The oxidation of dry methane by oxygen permeating through (SrFe)0.7(SrAl2)0.3Oz results in dominant total oxidation, suggesting the necessity to incorporate a reforming catalyst into the ceramic reactors for natural gas conversion.  相似文献   

8.
《Solid State Ionics》2006,177(19-25):1803-1806
Defect chemistry for a mixed conductor, La0.6Sr0.4Co0.2Fe0.8O3−δ was studied. Samples were treated under controlled oxygen partial pressure, P(O2), conditions at 1273 K [10 11.1  P(O2)/atm  1], and cooled to room temperature. Oxygen nonstoichiometry and valences of transition metal ions for the treated samples were evaluated by iodometry and X-ray absorption spectroscopy, respectively. With decreasing P(O2), preferential reduction of Co3+ to Co2+ was observed, while iron preserved its higher valence above 3 under conditions studied. A dependency of its electrical conductivity on P(O2) was discussed along with a change in concentration of oxygen vacancies and mixed valences.  相似文献   

9.
Transparent glass–ceramics containing zinc–aluminum spinel (ZnAl2O4) nanocrystals doped with tetrahedrally coordinated Co2+ ions were obtained by the sol–gel method for the first time. The gels of composition SiO2–Al2O3–ZnO–CoO were prepared at room temperature and heat-treated at temperature ranging 800–950 °C. When the gel samples were heated up to 900 °C, ZnAl2O4 nanocrystals were precipitated. Co2+ ions were located in tetrahedral sites in ZnAl2O4 nanocrystals. X-ray diffraction analysis shows that the crystallite sizes of ZnAl2O4 crystal become large with the heat-treatment temperature and time, and the crystallite diameter is in the range of 10–15 nm. The dependence of the absorption and emission spectra of the samples on heat-treatment temperature were presented. The difference in the luminescence between Co2+ doped glass–ceramic and Co2+ doped bulk crystal was analysed. The crystal field parameter Dq of 423 cm−1 and the Racah parameters B of 773 cm−1 and C of 3478.5 cm−1 were calculated for tetrahedral Co2+ ions.  相似文献   

10.
In this study, a powder mixture of Zn, Fe2O3 and NiO was used to produce different compositions of Ni1−xZnxFe2O4 (x=0.36, 0.5 and 0.64) nanopowders. High-energy ball milling with a subsequent heat treatment method was carried out. The XRD results indicated that for the content of Zn, x=0.64 a single phase of Ni–Zn ferrite was produced after 30 h milling while for the contents of Zn, x=0.36 and 0.5, the desired ferrite was formed after sintering the 30 h-milled powders at 500 °C. The average crystallite size decreased with increase in the Zn content. A DC electrical resistivity of the Ni–Zn ferrite, however, decreased with increase in the Zn content, its value was much higher than those samples prepared by the conventional ceramic route by using ZnO instead of Zn. This is attributed to smaller grains size which were obtained by using Zn. The FT-IR results suggested two absorption bands for octahedral and tetrahedral sites in the range of 350–700 cm−1. The VSM results revealed that by increasing the Zn content from 0.36 to 0.5, a saturation magnetization reached its maximum value; afterwards, a decrease was observed for Zn with x=0.64. Finally, magnetic permeability and dielectric permittivity were studied by using vector network analyzer to explore microwave-absorbing properties in X-band frequency. The minimum reflection loss value obtained for Ni0.5Zn0.5Fe2O4 samples, about −34 dB at 9.7 GHz, making them the best candidates for high frequency applications.  相似文献   

11.
Equilibrium of 1:2:3 superconductors (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy (this compound has in the past variously denoted as CLBLCO, CLBCO or CaLaBaCuO) with oxygen was studied for x=0.1 and x=0.4 in the temperature range of 150–950 °C under 1 atm. O2. The main process is the reversible reaction −Cu32+O6.625+0.25O2=−Cu22+Cu3+O7.125 which is completed with the formation of one Cu3+. The enthalpy (in kJ/mol CLBLCO) and entropy (in J(mol CLBLCO)−1K−1) of this reaction were calculated from the temperature dependence of the equilibrium constant. The values are ΔH=−33.1 and ΔS=−29.9 for x=0.1 and ΔH=−49.4 and ΔS=−42.7 for x=0.4.It was found that the equilibrium of ceramic pellet of CLBLCO with oxygen cannot be practically achieved below 300 °C while the equilibrium for powder is achieved even at 200 °C. Low rate of reaction of CLBLCO with oxygen causes the problem in low temperature equilibration. In contrast, diffusion of oxygen ions in the ceramics is observed even at 200 °C. This diffusion proceeds without the change of the oxygen content and may be applied in order to improve the homogeneity of the distribution of oxygen ions.  相似文献   

12.
《Solid State Ionics》2006,177(11-12):1015-1020
The electrical properties of CeNbO4+δ have been investigated at 1073–1223 K in the oxygen partial pressure range 10 17 to 0.36 atm. The conductivity and Seebeck coefficient behaviour indicates that, at oxygen chemical potentials close to atmospheric, tetragonal CeNbO4+δ possesses a mixed ionic and p-type electronic conductivity. The ion transference numbers under the p(O2) gradient of 0.93/0.21 atm, measured by the modified e.m.f. technique, are close to 0.4 decreasing in more reducing environments. The variations of partial ionic and electronic conductivities can be described in terms of the oxygen intercalation into the scheelite-type lattice, which results in increasing concentrations of both dominant charge carriers, oxygen interstitials and holes, when p(O2) increases. Reduction leads to p(O2)-independent electrical properties, followed by a drastic decrease in the conductivity at oxygen pressures below 10 15–10 9 atm due to a reversible transition into the monoclinic phase. Contrary to the zircon-type CeVOδ, no traces of the parent binary oxides were detected in the reduced cerium niobate.  相似文献   

13.
《Solid State Ionics》2006,177(35-36):3087-3091
Pr2NiO4-based oxide was studied as a new mixed electronic and oxide ionic conductor for the oxygen permeation membrane. It was found that Pr2NiO4 doped with Cu and Fe for Ni site exhibits the relatively high oxygen permeation rate. Doping second cation to Ni site is effective for improving the oxygen permeation rate and the trivalent cation seems to be effective for increasing the oxygen permeation rate. Among the examined cation, the highest oxygen permeation rate was obtained by doping 5 mol% Fe. The oxygen permeation rate was also significantly affected by the surface catalyst and the highest oxygen permeation rate of 80 μmol·min 1·cm 2 at 1273 K was achieved by using La0.1Sr0.9Co0.9Fe0.1O3 for the surface catalyst. Since the electrical conductivity slightly decreased with decreasing PO2 and it dropped significantly at PO2 = 10 19 atm, chemical stability of Pr2NiO4-based oxide seems to be reasonably high. Application of this new mixed conductor for the oxygen permeation membrane under the CH4 partial oxidation was also studied and it was confirmed that the oxygen permeation rate much improved under the CH4 oxidation condition and this Pr2NiO4 can be used for the oxygen permeation membrane for the CH4 partial oxidation.  相似文献   

14.
《Solid State Ionics》2006,177(5-6):457-470
Atomistic modelling showed that a key factor affecting the p(O2) dependencies of point defect chemical potentials in perovskite-type La0.3Sr0.7Fe1−xMxO3−δ (M = Ga, Al; x = 0–0.4) under oxidizing conditions, relates to the coulombic repulsion between oxygen vacancies and/or electron holes. The configurations of A- and B-site cations with stable oxidation states have no essential influence on energetics of the mobile charge carriers, whereas the electrons formed due to iron disproportionation are expected to form defect pair clusters with oxygen vacancies. These results were used to develop thermodynamic models, adequately describing the p(O2)-T-δ diagrams of La0.3Sr0.7Fe(M′)O3−δ determined by the coulometric titration technique at 923–1223 K in the oxygen partial pressure range from 1 × 10 5 to 0.5 atm. The thermodynamic functions governing the oxygen intercalation process were found independent of the defect concentration. Doping with aluminum and gallium leads to increasing oxygen deficiency and induces substantial changes in the behavior of iron cations, increasing the tendencies to disproportionation and hole localization. Despite similar oxygen nonstoichiometry in the Al- and Ga-substituted ferrites at a given dopant content, the latter tendency is more pronounced in the case of aluminum-containing perovskites.  相似文献   

15.
《Solid State Ionics》2006,177(5-6):595-600
Oxygen permeation fluxes across the dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) membrane disks were measured under an air/helium oxygen partial pressure gradient at high pressures (up to 10 atm) and various temperatures (973–1123 K). The fabricated BSCFO membrane exhibited good oxygen permeability with a high oxygen permeation flux of 2.01 ml min 1cm 2 (thickness: 1.37 mm) at 1123 K and 10 atm. Oxygen permeation results were analyzed theoretically using the surface exchange current model. The dependences of the oxygen permeation fluxes on the oxygen partial pressure gradient, suggested that the bulk oxygen ionic diffusion was the rate-limiting step for the overall oxygen permeation process across the BSCFO membrane. The ambipolar diffusion coefficients (Da), the oxygen vacancy diffusion coefficients (Dv) and the oxygen ionic conductivities (σi) of the BSCFO material at different temperatures (973–1123 K) were calculated. It was found that BSCFO possessed high oxygen diffusion coefficients and ionic conductivities, which resulted in the good oxygen permeability of BSCFO. In addition, the BSCFO membrane exhibited good stability of oxygen permeation at 1123 K, while the deterioration of oxygen permeation stability was observed at 1098 K due to structural changes occurring at the surface of the BSCFO membrane disk as demonstrated by XRD.  相似文献   

16.
《Solid State Ionics》2006,177(26-32):2407-2411
Electrical conduction of Sr-doped LaP3O9 ([Sr]/{[La] + [Sr]} = 2–10 mol%) was investigated under 0.4–5 kPa of p(H2O) and 0.01–100 kPa of p(O2) or 0.3–3 kPa of p(H2) at 573–973 K. Sr-doped LaP3O9 showed apparent H/D isotope effect on conductivity regardless of the Sr-doping level under both H2O/O2 oxidizing and H2/H2O reducing conditions at investigated temperatures. Conductivities of the material were almost independent of p(O2) and p(H2O). These results demonstrated that the Sr-doped LaP3O9 exhibited protonic conduction under wide ranges of p(O2), p(H2O) and temperature. The conductivity of the Sr-doped LaP3O9 increased with increasing Sr concentration up to its solubility limit, ca. 3 mol%, while the further Sr-doping slightly degraded the conductivity. These indicate that Sr2+ substitution for La3+ leads to proton dissolution into the material and induced protonic conduction. Conductivities of the 3 mol% Sr-doped sample were 2 × 10- 6–5 × 10 4 S cm 1 at 573–973 K.  相似文献   

17.
The magnetic relaxation processes in two ferrofluids with Mn0.4Zn0.6Fe2O4 (sample F1) and Mn0.6Fe0.4Fe2O4 (sample F2) mixed ferrite particles, dispersed in n-decan and kerosene, respectively, are investigated through the determination of components χ′ and χ′′ of the complex magnetic susceptibility in the range of (2–30) MHz. The values of the saturation magnetization of the two ferrofluids are M=5.28 kA/m for sample F1 and M=10.99 kA/m for sample F2. A maximum of the imaginary component χ′′ was observed for both samples at frequencies of tens MHz. This maximum was assigned to relaxation processes of Néel type.The effective anisotropy constant K of the particles from the studied samples was evaluated, using both static and dynamic measurements and the values were found to be K1=6.12×103 J m−3 for the ferrofluid F1, and K2=5.60×103 J m−3 for the ferrofluid F2. From ferromagnetic resonance measurements, and based on the theoretical values computed for the Lande factor (g), the effective anisotropy constants for the mixed ferrite particles in the studied ferrofluids and the anisotropy field values were determined using a new method. The values obtained in this way for the anisotropy constants K1 and K2 are compared to the ones determined from magnetic relaxation measurements.  相似文献   

18.
The ESR spectra of the ferrite system Co0.6Zn0.4MnxFe2−xO4 (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were obtained at room temperature. The experimental values of the magnetic moment (μexp) were estimated from the ESR spectra and the cation distribution was consequently established from the values of μexp. The systematic decrease in ESR line width observed in our present study was attributed to the decrease of Fe2+ concentration with increasing Mn content. The resonance field decreases and reaches a minimum at high values of Mn content whereas the magnetic moment reaches a maximum at these values. The IR spectra were recorded in the range 200–1200 cm−1. The bands at 569 (ν1) and 389 cm−1 were assigned to the tetrahedral and octahedral complexes, respectively. The band at 441 cm−1 is due to the Mn–O bond vibration. The theoretical lattice parameter was calculated and was found to be larger than the experimental one aexp due to the presence of Mn4+ ions.  相似文献   

19.
《Solid State Ionics》2009,180(40):1633-1639
The total conductivity and oxygen permeation properties of dense SrCoFeOx membranes synthesized from the solid state method were studied in the temperature range of 700–900 °C. The SrCoFeOx membranes consist of an intergrowth (Sr4Fe6  xCoxO13 ± δ), perovskite (SrFe1  xCoxO3  δ), and spinel (Co3  xFexO4) phase. SrCoFeOx exhibits n-type and p-type conduction at low and high oxygen partial pressures, respectively, and has a total conductivity of 16.5 S/cm at 900 °C in air. The oxygen permeation fluxes for SrCoFeOx and SrFeCo0.5Ox membranes were measured with either an inert or carbon monoxide sweep gas. The oxygen permeation fluxes were higher through SrCoFeOx membranes than SrFeCo0.5Ox membranes and can be attributed to a difference in the amount and makeup of the perovskite phase present in each composition. The oxygen permeation fluxes with a carbon monoxide sweep gas were approximately two orders of magnitude larger than the fluxes measured with an inert sweep gas for both compositions. The large oxygen permeation fluxes observed with a carbon monoxide sweep are due to a higher driving force for oxygen transport and a reaction on the sweep side of the membrane that maintains a low oxygen partial pressure.  相似文献   

20.
《Solid State Ionics》2006,177(19-25):1743-1746
We synthesized BaIn1−xCoxO3−δ (x = 0–0.8) with a defective perovskite structure by partly replacing In with Co in Ba2In2O5. Based on XRD measurements, the synthesized compound was found to have cubic perovskite and orthorhombic brownmillerite structures depending on the amount of Co. BaIn1−xCoxO3−δ (x = 0.2 and 0.3) showed high total electrical conductivities without undergoing the structural transformation that the original Ba2In2O5 undergoes. Some of the samples showed both electronic and oxide ionic conductivities. At the same time, the oxide ionic conductivity was comparable with that of Ba2In2O5. For example, the sample with x = 0.1 had a total electrical conductivity of 4.7 × 10 1 S cm 1 and an oxide ion transport number of 0.52 at 850 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号