首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The CEARXRF GUI‐Based Monte Carlo–Library Least‐Squares (MCLLS) Code is demonstrated with results from a micro‐focused EDXRF analyzer, which can be used to calculate elemental weight fractions in metal alloys or rock samples accurately by library least‐squares regression of the measured X‐ray spectrum with computer‐generated elemental library spectra. An elemental stratified sampling variance reduction technique has been implemented in the CEARXRF5 code, which equalizes the statistical precision of the elemental libraries within the measured sample independent of the relative elemental amounts that are present. Also, an improved Si(Li) detector response function (DRF) has been obtained for micro‐focused X‐ray fluorescence (XRF) analyzers, and the DRF parameters are obtained based on regression from pure elemental experimental spectra. It is demonstrated that the resulting MCLLS approach can greatly improve the accuracy of elemental XRF analysis results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A microprobe system has been installed on the nanoprobe/XAFS beamline (BL8C) at PLS‐II, South Korea. Owing to the reproducible switch of the gap of the in‐vacuum undulator (IVU), the intense and brilliant hard X‐ray beam of an IVU can be used in X‐ray fluorescence (XRF) and X‐ray absorption fine‐structure (XAFS) experiments. For high‐spatial‐resolution microprobe experiments a Kirkpatrick–Baez mirror system has been used to focus the millimeter‐sized X‐ray beam to a micrometer‐sized beam. The performance of this system was examined by a combination of micro‐XRF imaging and micro‐XAFS of a beetle wing. These results indicate that the microprobe system of the BL8C can be used to obtain the distributions of trace elements and chemical and structural information of complex materials.  相似文献   

3.
Stratified materials are of great importance for many branches of modern industry, e.g. electronics or optics and for biomedical applications. Examination of chemical composition of individual layers and determination of their thickness helps to get information on their properties and function. A confocal 3D micro X‐ray fluorescence (3D µXRF) spectroscopy is an analytical method giving the possibility to investigate 3D distribution of chemical elements in a sample with spatial resolution in the micrometer regime in a non‐destructive way. Thin foils of Ti, Cu and Au, a bulk sample of Cu and a three‐layered sandwich sample, made of two thin Fe/Ni alloy foils, separated by polypropylene, were used as test samples. A Monte Carlo (MC) simulation code for the determination of elemental concentrations and thickness of individual layers in stratified materials with the use of confocal 3D µXRF spectroscopy was developed. The X‐ray intensity profiles versus the depth below surface, obtained from 3D µXRF experiments, MC simulation and an analytical approach were compared. Correlation coefficients between experimental versus simulated, and experimental versus analytical model X‐ray profiles were calculated. The correlation coefficients were comparable for both methods and exceeded 99%. The experimental X‐ray intensity profiles were deconvoluted with iterative MC simulation and by using analytical expression. The MC method produced slightly more accurate elemental concentrations and thickness of successive layers as compared to the results of the analytical approach. This MC code is a robust tool for simulation of scanning confocal 3D µXRF experiments on stratified materials and for quantitative interpretation of experimental results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Quantitative X‐ray fluorescence (XRF) measurements have been conducted on naturally lead‐contaminated samples. The calibration procedure using the ratio of fluorescence to Compton scattered radiation was investigated using Monte Carlo simulation. Experimental results with low‐energy photons (14 keV) and simulations show a very good linearity of the fluorescence to Compton ratio as a function of metal concentration. Lead (Pb), iron (Fe) and zinc (Zn) are measured in samples of Phaseolus vulgaris (bean seeds) that have been grown using a nutritive solution with different Pb dopings. Naturally contaminated samples are thus obtained. The calibration must be done for fixed conditions of X‐ray energy and scattering angle, while X‐ray beam intensity and detector to sample distance can change from one sample to another. Simulation allows to evaluate the matrix effect on the calibration curve, and shows that linearity is preserved even in the presence of other heavy elements in the fluorescence spectrum. However, calibration must be done using samples with similar matrix as it affects the slope of the curve. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we discuss approaches to prepare solid samples for X‐ray fluorescence spectrometry (XRF). Although XRF can be used to analyze major and minor elements in various solid samples including powders and grains without dissolution techniques, to obtain reliable XRF results, the prepared sample must meet certain criteria related to homogeneity, particle size, flatness, and thickness. The conditions are defined by the analytical depth of fluorescent X‐rays from analytes, and the analytical depth can be estimated from the X‐ray absorption related to the energy of each X‐ray and the composition and density of the sample. For example, when the sample flatness and particle size are less than the analytical depth and the sample possesses homogeneity within a depth less than the analytical depth, the XRF results are representative of the entire sample. Furthermore, an appropriate sample thickness that is larger than the analytical depth or constant can prevent changes in fluorescent X‐ray intensity with variations in sample thickness. To obtain accurate and reproducible measurements, inhomogeneous solid samples must be pulverized, homogenized, and prepared as loose powder, powder pellets, or glass beads. This paper explains the approaches used to prepare solid samples for XRF analysis based on the analytical depths of fluorescent X‐rays. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The knowledge of size‐segregated elemental concentrations in atmospheric particulate matter (PM) gives a useful contribution to the complete chemical characterisation; this information can be obtained by sampling with multi‐stage cascade impactors. In this work, samples were collected using a low‐pressure 12‐stage Small Deposit Impactor and a 13‐stage rotating Micro Orifice Uniform Deposit Impactor?. Both impactors collect the aerosol in an inhomogeneous geometry, which needs a special set‐up for X‐ray analysis. This work aims at setting up an energy dispersive X‐ray fluorescence (ED‐XRF) spectrometer to analyse quantitatively size‐segregated samples obtained by these impactors. The analysis of cascade impactor samples by ED‐XRF is not customary; therefore, as additional consistency test some samples were analysed also by particle‐induced X‐ray emission (PIXE), which is more frequently applied to size‐segregated samples characterised by small PM quantities. A very good agreement between ED‐XRF and PIXE results was obtained for all the detected elements in samples collected with both impactors. The good inter‐comparability proves that our methodology is reliable for analysing size‐segregated samples by ED‐XRF technique. The advantage of this approach is that ED‐XRF is cheaper, easier to use, and more widespread than PIXE, thus promoting an intensive use of multi‐stage impactors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
We have applied recently two XRF (micro x‐ray fluorescence) methods [micro‐Grazing Exit XRF (GE‐XRF) and confocal 3D‐XRF] to Japanese lacquerware ‘Tamamushi‐nuri.’ A laboratory grazing‐exit XRF (GE‐XRF) instrument was developed in combination with a micro‐XRF setup. A micro x‐ray beam was produced by a single capillary and a pinhole aperture. Elemental x‐ray images (2D images) obtained at different analyzing depths by micro GE‐XRF have been reported. However, it was difficult to directly obtain depth‐selective x‐ray spectra and 2D images. A 3D XRF instrument using two independent polycapillary x‐ray lenses and two x‐ray sources (Cr and Mo targets) was also applied to the same sample. 2D XRF images of a Japanese lacquerware showed specific distributions of elements at the different depths, indicating that ‘Tamamushi‐nuri’ lacquerware has a layered structure. The merits and disadvantages of both the micro GE‐XRF and confocal micro XRF methods are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
《X射线光谱测定》2003,32(2):106-112
With the nowadays widespreaded use of x‐ray optics in x‐ray fluorescence analysis, large convergence or divergence angles can occur. This experimental situation violates a basic assumption of the usual fundamental parameter quantification procedure. In order to take beam divergences in micro x‐ray fluorescence analysis into account, a way of calculating fluorescence intensities numerically by Monte Carlo integration is described. For three examples of typical micro‐XRF set‐ups the fluorescence intensities and their deviation from the parallel beam geometry are calculated. Furthermore, we propose a new approach with ‘equivalent angles’ which correct for the beam divergences in fundamental parameter methods. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Argillaceous rocks are considered as suitable host rock formation to isolate the high‐level radioactive waste from the biosphere for thousands of years. Boda Claystone Formation, the possible host rock formation for the Hungarian high‐level radioactive waste repository, has geologically and mineralogically been studied in detail, but its physico‐chemical parameters describing the retention capability of the rock needed further examinations. Studies were performed on thin sections subjected to 72 h sorption experiments using inactive Nd(III). Nd(III) has been used as a chemical analogue for transuranium elements of the radioactive waste to examine the ion uptake capability of the micrometre size mineral phases occurring in the rock. The elemental mapping of synchrotron radiation‐based microscopic X‐ray fluorescence (micro‐XRF) combined with scanning electron microscopy energy dispersive X‐ray analysis (SEM/EDX) has sufficient sensitivity to study the uptake capability of the different mineral phases on the microscale without the necessity of applying radioactive substances. Elemental maps were recorded on several thousand pixels using micrometre magnitude spatial resolution. By interleaving micro‐XRF and SEM/EDX data sets from the same sample area and applying multivariate methods, calcite and clay minerals could be identified as the main mineral phases responsible for Nd(III) uptake without using additional microscopic X‐ray diffraction mapping. It should be highlighted that the ion uptake capability of dolomite containing calcium and magnesium could be distinguished from the characteristics of calcite only by the interleaving of micro‐XRF and SEM/EDX data sets. The presence of minerals was verified by applying microscopic X‐ray diffraction point measurements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A confocal set‐up is presented that improves micro‐XRF and XAFS experiments with high‐pressure diamond‐anvil cells (DACs). In this experiment a probing volume is defined by the focus of the incoming synchrotron radiation beam and that of a polycapillary X‐ray half‐lens with a very long working distance, which is placed in front of the fluorescence detector. This set‐up enhances the quality of the fluorescence and XAFS spectra, and thus the sensitivity for detecting elements at low concentrations. It efficiently suppresses signal from outside the sample chamber, which stems from elastic and inelastic scattering of the incoming beam by the diamond anvils as well as from excitation of fluorescence from the body of the DAC.  相似文献   

11.
Novel confocal X‐ray fluorescence (XRF) spectrometer was designed and constructed for 3D analysis of elementary composition in the surface layer of spatially extended objects having unlimited chemical composition and geometrical shape. The main elements of the XRF device were mounted on a moving frame of a commercial 3D printer. The XRF unit consists of a silicon drift detector and a low‐power transmission‐type X‐ray tube. Both the excitation and secondary X‐ray beams were formed and regulated by simple collimator systems in order to create a macro confocal measuring setup. The spatial accuracy of the mechanical stages of the 3D printer achieved was less than 5 μm at 100‐μm step‐size. The diameter of the focal spot of the confocal measuring arrangement was between 1.5 and 2.0 mm. The alignment of the excitation and secondary X‐ray beams and the selection of the measuring spot on the sample surface were ensured by two laser beams and a digital microscope for visualization of the irradiated spot. The elements of the optical system together with the XRF spectrometer were mounted on the horizontal arm of the 3D printer, which mechanical design is capable of synchronized moving the full spectroscopic device within vertical directions. Analytical capability and the 3D spatial resolution of the confocal spectrometer were determined. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Knowing the relationship between three‐dimensional structure and properties is paramount for complete understanding of material behavior. In this work, the internal nanostructure of micrometer‐size (~10 µm) composite Ni/Al particles was analyzed using two different approaches. The first technique, synchrotron‐based X‐ray nanotomography, is a nondestructive method that can attain resolutions of tens of nanometers. The second is a destructive technique with sub‐nanometer resolution utilizing scanning electron microscopy combined with an ion beam and `slice and view' analysis, where the sample is repeatedly milled and imaged. The obtained results suggest that both techniques allow for an accurate characterization of the larger‐scale structures, while differences exist in the characterization of the smallest features. Using the Monte Carlo method, the effective resolution of the X‐ray nanotomography technique was determined to be ~48 nm, while focused‐ion‐beam sectioning with `slice and view' analysis was ~5 nm.  相似文献   

13.
X‐ray tubes have a broad range of applications worldwide, including several techniques for atomic physics, like X‐ray fluorescence, as well as for medical imaging, like computed tomography. The performances of X‐ray imaging detectors have shown to be significantly sensitive to the incident beam spectrum. Therefore, an accurate knowledge of the X‐ray beam becomes necessary for the emission source characterization and the whole imaging process comprehension. Direct measurements and suitable Monte Carlo simulations may be used to establish the X‐ray spectra. Dedicated Monte Carlo simulation routines, based on the PENELOPE code, have been developed to determine the Bremsstrahlung X‐ray spectra generated by conventional X‐ray tubes. The simulated spectra have been validated by comparison with the corresponding experimental data showing an overall good agreement. The incorporation of a suitably designed virtual grid allowed to assess the angular distribution of Bremsstrahlung yield, showing a remarkable anisotropy. In addition, a dedicated program has been developed for virtual imaging, which enables to perform suitable X‐ray absorption contrast images. Also, the developed program includes a user‐friendly graphic interface to allow the upload of required input parameters, which include setup arrangement, beam characteristics, sample properties and image simulation parameters (spatial resolution, tracks per run, etc.). The software includes dedicated subroutines which handle the physical process from X‐ray generation up to detector signal acquisition. The aim of the developed program is to perform virtual imaging by means of absorption contrast and using conventional X‐ray sources, which may be a useful tool for the study the X‐ray imaging techniques in several research fields as well as for educational purposes. The performed comparisons with experimental data have shown good agreement. The obtained results for X‐ray imaging may constitute useful information for the comprehension and improvement of X‐ray image quality, like absorption contrast optimization, detail visualization, definition and detectability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Portable micro‐X‐ray fluorescence (micro‐XRF) spectrometers mostly utilize a polycapillary X‐ray lens along the excitation channel to collect, propagate and focus down to few tens of micrometers the X‐ray tube radiation. However, the polycapillary X‐ray lens increases the complexity of the quantification of micro‐XRF data because its transmission efficiency is strongly dependent on the lens specifications and the propagated X‐ray energy. This feature results to a significant and not easily predicted modification of the energy distribution of the primary X‐ray tube spectrum. In the present work, we propose a simple calibration procedure of the X‐ray lens transmission efficiency based on the fundamental parameters approach in XRF analysis. This analytical methodology is best suited for compact commercial and portable micro‐XRF spectrometers. The developed calibration procedure is validated through the quantitative analysis of a broad range of samples with archeological relevance such as glasses, historical copper alloys, silver and gold alloys offering an overall accuracy of less than 10%–15%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A good estimation of the matrix composition and the areal mass of the sample is critical for quantitative X‐ray fluorescence (XRF) analysis. Integrated aspects of the XRF quantitative analysis of various human body organs are presented. Special emphasis is placed on the determination of the sample thicknesses at which the specimen can be regarded as thin, thick, or intermediate thickness depending on the element under consideration. Moreover, a method for a fully quantitative analysis allowing the determination of the masses per unit area of chemical elements in thin, thick, and intermediate thickness samples is discussed. It was found that for an incident beam of 17 keV energy, a 15 µm thick sample is of intermediate thickness for all elements between P and Ca and becomes thin from Fe for most human body tissues in a natural form. Dried samples of soft tissues excluding these of low water content can be regarded as thin for all elements from phosphorus to strontium. The use of thin sample approach in quantification of intermediate thickness specimen may result in about 30–45% discrepancy in areal mass (weight fraction) of phosphorus, 20–35% of sulfur, 15–25% of chlorine, 8–15% of potassium, and 5–10% of calcium. Theoretical evaluations presented in the work are verified experimentally. The analysis of human brain samples (white and gray matter) and bovine liver (National Institute of Standards and Technology standard reference materials 1577b) confirms high accuracy of the XRF quantification on the basis of the described procedures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
《X射线光谱测定》2006,35(4):238-242
A method of correction for absorption effects in micro‐beam x‐ray fluorescence analysis is described. A fast, energy‐dispersive, silicon drift detector (SDD) was used to measure the primary x‐ray beam transmitted through the sample. The absorption factors were calculated using the data acquired with the SDD. The possibility of using the coherently, incoherently and multiple scattered primary radiation for determining the mass of individual particles was examined. The proposed methods were validated with the use of NIST K3089 glass micro‐spheres of known composition. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A new type of diffractive X‐ray optical elements is reported, which have been used as beam‐shaping condenser lenses in full‐field transmission X‐ray microscopes. These devices produce a square‐shaped flat‐top illumination on the sample matched to the field of view. The size of the illumination can easily be designed depending on the geometry and requirements of the specific experimental station. Gold and silicon beam‐shapers have been fabricated and tested in full‐field microscopes in the hard and soft X‐ray regimes, respectively.  相似文献   

18.
The preparation of hard material samples with the necessary size and shape is critical to successful material analysis. X‐ray nanotomography requires that samples are sufficiently thin for X‐rays to pass through the sample during rotation for tomography. One method for producing samples that fit the criteria for X‐ray nanotomography is focused ion beam/scanning electron microscopy (FIB/SEM) which uses a focused beam of ions to selectively mill around a region of interest and then utilizes a micromanipulator to remove the milled‐out sample from the bulk material and mount it on a sample holder. In this article the process for preparing X‐ray nanotomography samples in multiple shapes and sizes is discussed. Additionally, solid‐oxide fuel cell anode samples prepared through the FIB/SEM technique underwent volume‐independence studies for multiple properties such as volume fraction, average particle size, tortuosity and contiguity to observe the characteristics of FIB/SEM samples in X‐ray nanotomography.  相似文献   

19.
A blue pigment was identified by micro‐Raman spectroscopy, X‐ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM)/energy dispersive X‐ray (EDX) and X‐ray diffraction (XRD). The test sample, a funerary lacquer tray, belongs to West Han Dynasty (206 BC–AD 8) of China and was decorated with faint blue patterns. The result from Raman spectroscopy showed that the faint blue is covellite (CuS) due to the presence of a characteristic peak at 474.5 cm−1, which further was confirmed by XRF, SEM–EDX and XRD. This research indicated that CuS had been used as a blue pigment to decorate lacquer wares from the West Han Dynasty in China. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
《X射线光谱测定》2003,32(2):93-105
This paper describes the peak‐to‐background ratio improvement that can be achieved in PIXE and XRF applications by the use of thin crystal detectors. This improvement becomes apparent in the presence of an intense γ‐ray source, which can be produced either during proton irradiation of a sample (PIXE) or in the deexcitation of the radionuclide in radioisotope‐induced XRF analysis (RIXRF). In order to study theoretically the energy response of a silicon crystal in the x‐ray energy region with respect to its thickness and the energy of the incident γ‐radiation, a Monte Carlo simulation was performed. Experimentally, two detectors having crystal thicknesses of 300 µm and 3 mm were employed in specific analytical applications of PIXE, PIXE‐induced XRF and RIXRF techniques. The peak‐to‐background ratios obtained for various characteristic x‐rays were compared between the two detectors. The performances of the two detectors were also compared in the monochromatic XRF analysis of samples with low average atomic number matrix content. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号