首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Knowing the relationship between three‐dimensional structure and properties is paramount for complete understanding of material behavior. In this work, the internal nanostructure of micrometer‐size (~10 µm) composite Ni/Al particles was analyzed using two different approaches. The first technique, synchrotron‐based X‐ray nanotomography, is a nondestructive method that can attain resolutions of tens of nanometers. The second is a destructive technique with sub‐nanometer resolution utilizing scanning electron microscopy combined with an ion beam and `slice and view' analysis, where the sample is repeatedly milled and imaged. The obtained results suggest that both techniques allow for an accurate characterization of the larger‐scale structures, while differences exist in the characterization of the smallest features. Using the Monte Carlo method, the effective resolution of the X‐ray nanotomography technique was determined to be ~48 nm, while focused‐ion‐beam sectioning with `slice and view' analysis was ~5 nm.  相似文献   

2.
A microelectromechanical‐systems‐based calorimeter designed for use on a synchrotron nano‐focused X‐ray beamline is described. This instrument allows quantitative DC and AC calorimetric measurements over a broad range of heating/cooling rates (≤100000 K s?1) and temperature modulation frequencies (≤1 kHz). The calorimeter was used for high‐resolution thermal imaging of nanogram‐sized samples subjected to X‐ray‐induced heating. For a 46 ng indium particle, the measured temperature rise reaches ~0.2 K, and is directly correlated to the X‐ray absorption. Thermal imaging can be useful for studies of heterogeneous materials exhibiting physical and/or chemical transformations. Moreover, the technique can be extended to three‐dimensional thermal nanotomography.  相似文献   

3.
We present an integrated confocal Raman microscope in a focused ion beam scanning electron microscope (FIB SEM). The integrated system enables correlative Raman and electron microscopic analysis combined with focused ion beam sample modification on the same sample location. This provides new opportunities, for example the combination of nanometer resolution with Raman advances the analysis of sub‐diffraction‐sized particles. Further direct Raman analysis of FIB engineered samples enables in situ investigation of sample changes. The Raman microscope is an add‐on module to the electron microscope. The optical objective is brought into the sample chamber, and the laser source, and spectrometer are placed in a module attached onto and outside the chamber. We demonstrate the integrated Raman FIB SEM function with several experiments. First, correlative Raman and electron microscopy is used for the investigation of (sub‐)micrometer‐sized crystals. Different crystals are identified with Raman, and in combination with SEM the spectral information is combined with structurally visible polymorphs and particle sizes. Analysis of sample changes made with the ion beam is performed on (1) structures milled in a silicon substrate and (2) after milling with the FIB on an organic polymer. Experiments demonstrate the new capabilities of an integrated correlative Raman–FIB–SEM. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The synchrotron‐based hard X‐ray nanotomography beamline, named 7C X‐ray Nano Imaging (XNI), was recently established at Pohang Light Source II. This beamline was constructed primarily for full‐field imaging of the inner structures of biological and material samples. The beamline normally provides 46 nm resolution for still images and 100 nm resolution for tomographic images, with a 40 µm field of view. Additionally, for large‐scale application, it is capable of a 110 µm field of view with an intermediate resolution.  相似文献   

5.
In this paper the first practical application of kinoform lenses for the X‐ray reflectivity characterization of thin layered materials is demonstrated. The focused X‐ray beam generated from a kinoform lens, a line of nominal size ~50 µm × 2 µm, provides a unique possibility to measure the X‐ray reflectivities of thin layered materials in sample scanning mode. Moreover, the small footprint of the X‐ray beam, generated on the sample surface at grazing incidence angles, enables one to measure the absolute X‐ray reflectivities. This approach has been tested by analyzing a few thin multilayer structures. The advantages achieved over the conventional X‐ray reflectivity technique are discussed and demonstrated by measurements.  相似文献   

6.
X‐ray fluorescence nanotomography provides unprecedented sensitivity for studies of trace metal distributions in whole biological cells. Dose fractionation, in which one acquires very low dose individual projections and then obtains high statistics reconstructions as signal from a voxel is brought together (Hegerl & Hoppe, 1976), requires accurate alignment of these individual projections so as to correct for rotation stage runout. It is shown here that differential phase contrast at 10.2 keV beam energy offers the potential for accurate cross‐correlation alignment of successive projections, by demonstrating that successive low dose, 3 ms per pixel, images acquired at the same specimen position and rotation angle have a narrower and smoother cross‐correlation function (1.5 pixels FWHM at 300 nm pixel size) than that obtained from zinc fluorescence images (25 pixels FWHM). The differential phase contrast alignment resolution is thus well below the 700 nm × 500 nm beam spot size used in this demonstration, so that dose fractionation should be possible for reduced‐dose, more rapidly acquired, fluorescence nanotomography experiments.  相似文献   

7.
A video camera system for observing a sample from the direction of an incident soft X‐ray beam has been developed. The sample is seen via two reflecting mirrors. The first mirror, which has a hole to allow the soft X‐ray beam to pass through, is set on the beam axis in a vacuum. The second mirror is used to cancel out the mirror inversion of the image. This camera system is used for efficient positioning of samples in a soft X‐ray beam.  相似文献   

8.
X‐ray microbeams have become increasingly valuable in protein crystallography. A number of synchrotron beamlines worldwide have adapted to handling smaller and more challenging samples by providing a combination of high‐precision sample‐positioning hardware, special visible‐light optics for sample visualization, and small‐diameter X‐ray beams with low background scatter. Most commonly, X‐ray microbeams with diameters ranging from 50 µm to 1 µm are produced by Kirkpatrick and Baez mirrors in combination with defining apertures and scatter guards. A simple alternative based on single‐bounce glass monocapillary X‐ray optics is presented. The basic capillary design considerations are discussed and a practical and robust implementation that capitalizes on existing beamline hardware is presented. A design for mounting the capillary is presented which eliminates parasitic scattering and reduces deformations of the optic to a degree suitable for use on next‐generation X‐ray sources. Comparison of diffraction data statistics for microcrystals using microbeam and conventional aperture‐collimated beam shows that capillary‐focused beam can deliver significant improvement. Statistics also confirm that the annular beam profile produced by the capillary optic does not impact data quality in an observable way. Examples are given of new structures recently solved using this technology. Single‐bounce monocapillary optics can offer an attractive alternative for retrofitting existing beamlines for microcrystallography.  相似文献   

9.
A pre‐focused X‐ray beam at 12 keV and 9 keV has been used to illuminate a single‐bounce capillary in order to generate a high‐flux X‐ray microbeam. The BioCAT undulator X‐ray beamline 18ID at the Advanced Photon Source was used to generate the pre‐focused beam containing 1.2 × 1013 photons s?1 using a sagittal‐focusing double‐crystal monochromator and a bimorph mirror. The capillary entrance was aligned with the focal point of the pre‐focused beam in order to accept the full flux of the undulator beam. Two alignment configurations were tested: (i) where the center of the capillary was aligned with the pre‐focused beam (`in‐line') and (ii) where one side of the capillary was aligned with the beam (`off‐line'). The latter arrangement delivered more flux (3.3 × 1012 photons s?1) and smaller spot sizes (≤10 µm FWHM in both directions) for a photon flux density of 4.2 × 1010 photons s?1µm?2. The combination of the beamline main optics with a large‐working‐distance (approximately 24 mm) capillary used in this experiment makes it suitable for many microprobe fluorescence applications that require a micrometer‐size X‐ray beam and high flux density. These features are advantageous for biological samples, where typical metal concentrations are in the range of a few ng cm?2. Micro‐XANES experiments are also feasible using this combined optical arrangement.  相似文献   

10.
Focused hard X‐ray microbeams for use in X‐ray nanolithography have been investigated. A 7.5 keV X‐ray beam generated at an undulator was focused to about 3 µm using a Fresnel zone plate fabricated on silicon. The focused X‐ray beam retains a high degree of collimation owing to the long focal length of the zone plate, which greatly facilitates hard X‐ray nanoscale lithography. The focused X‐ray microbeam was successfully utilized to fabricate patterns with features as small as 100 nm on a photoresist.  相似文献   

11.
A new fast X‐ray absorption spectroscopy scanning method was recently implemented at the Hard X‐ray Microprobe endstation P06, PETRA III, DESY, utilizing a Maia detector. Spectromicroscopy maps were acquired with spectra for X‐ray absorption near‐edge structure (XANES) acquisition in the sub‐second regime. The method combines XANES measurements with raster‐scanning of the sample through the focused beam. The order of the scanning sequence of the axes, one beam energy axis and two (or more) spatial axes, is a variable experimental parameter and, depending on it, the dwell at each location can be either single and continuous (if the energy axis is the inner loop) or in shorter discontinuous intervals (if a spatial axis is innermost). The combination of improved spatial and temporal resolution may be necessary for rapidly changing samples, e.g. for following in operando chemical reactions or samples highly susceptible to beam damage where the rapid collection of single XANES spectra avoids issues with the emergence of chemical changes developing from latent damage. This paper compares data sets collected on a specially designed test pattern and a geological thin‐section scanning the energy as inner, middle and outer axis in the sequence. The XANES data of all three scanning schemes is found to show excellent agreement down to the single‐pixel level.  相似文献   

12.
Accurate end point detection of interface for multilayers using focused ion beam (FIB) is important in nanofabrication and IC modification. Real-time end point graph shows sample absorbed current as a function of sputtering time during FIB milling process. It is found that sample absorbed current increases linearly with ion beam current for the same material and changes when ion beam is milling through a different material. Investigation by atomic force microscope (AFM) and FIB cross-sectioning shows that accurate SiO2/Si interface occurs to where the maximum sample absorbed current occurs. Since sample absorbed current can be real-time monitored in focused ion beam machine, the paper provides a viable and simple method for accurately determining the interface during FIB milling process for widely used SiO2/Si system.  相似文献   

13.
A new system of slits called `spiderweb slits' have been developed for depth‐resolved powder or polycrystalline X‐ray diffraction measurements. The slits act on diffracted X‐rays to select a particular gauge volume of sample, while absorbing diffracted X‐rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range of diffraction angles, and work for X‐ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray‐tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X‐ray Powder Diffraction beamline at the National Synchrotron Light Source II.  相似文献   

14.
The development of a sagittally focusing double‐multilayer monochromator is reported, which produces a spatially extended wide‐bandpass X‐ray beam from an intense synchrotron bending‐magnet source at the Advanced Photon Source, for ultrafast X‐ray radiography and tomography applications. This monochromator consists of two W/B4C multilayers with a 25 Å period coated on Si single‐crystal substrates. The second multilayer is mounted on a sagittally focusing bender, which can dynamically change the bending radius of the multilayer in order to condense and focus the beam to various points along the beamline. With this new apparatus, it becomes possible to adjust the X‐ray beam size to best match the area detector size and the object size to facilitate more efficient data collection using ultrafast X‐ray radiography and tomography.  相似文献   

15.
X‐ray beam‐position stability is indispensable in cutting‐edge experiments using synchrotron radiation. Here, for the first time, a beam‐position feedback system is presented that utilizes an easy‐to‐use X‐ray beam‐position monitor incorporating a diamond‐fluorescence screen. The acceptable range of the monitor is above 500 µm and the feedback system maintains the beam position within 3 µm. In addition to being inexpensive, the system has two key advantages: it works without a scale factor for position calibration, and it has no dependence on X‐ray energy, X‐ray intensity, beam size or beam shape.  相似文献   

16.
Cryocooling is a technique routinely used to mitigate the effects of secondary radiation damage on macromolecules during X‐ray data collection. Energy from the X‐ray beam absorbed by the sample raises the temperature of the sample. How large is the temperature increase and does this reduce the effectiveness of cryocooling? Sample heating by the X‐ray beam has been measured non‐invasively for the first time by means of thermal imaging. Specifically, the temperature rise of 1 mm and 2 mm glass spheres (sample surrogates) exposed to an intense synchrotron X‐ray beam and cooled in a laminar flow of nitrogen gas is experimentally measured. For the typical sample sizes, photon energies, fluxes, flux densities and exposure times used for macromolecular crystallographic data collection at third‐generation synchrotron radiation sources and with the sample accurately centered in the cryostream, the heating by the X‐ray beam is only a few degrees. This is not sufficient to raise the sample above the amorphous‐ice/crystalline‐ice transition temperature and, if the cryostream cools the sample to 100 K, not even enough to significantly enhance radiation damage from secondary effects.  相似文献   

17.
A new type of diffractive X‐ray optical elements is reported, which have been used as beam‐shaping condenser lenses in full‐field transmission X‐ray microscopes. These devices produce a square‐shaped flat‐top illumination on the sample matched to the field of view. The size of the illumination can easily be designed depending on the geometry and requirements of the specific experimental station. Gold and silicon beam‐shapers have been fabricated and tested in full‐field microscopes in the hard and soft X‐ray regimes, respectively.  相似文献   

18.
While large‐scale synchrotron sources provide a highly brilliant monochromatic X‐ray beam, these X‐ray sources are expensive in terms of installation and maintenance, and require large amounts of space due to the size of storage rings for GeV electrons. On the other hand, laboratory X‐ray tube sources can easily be implemented in laboratories or hospitals with comparatively little cost, but their performance features a lower brilliance and a polychromatic spectrum creates problems with beam hardening artifacts for imaging experiments. Over the last decade, compact synchrotron sources based on inverse Compton scattering have evolved as one of the most promising types of laboratory‐scale X‐ray sources: they provide a performance and brilliance that lie in between those of large‐scale synchrotron sources and X‐ray tube sources, with significantly reduced financial and spatial requirements. These sources produce X‐rays through the collision of relativistic electrons with infrared laser photons. In this study, an analysis of the performance, such as X‐ray flux, source size and spectra, of the first commercially sold compact light source, the Munich Compact Light Source, is presented.  相似文献   

19.
Using scanning X‐ray diffraction microscopy with a spot size of 220 × 600 nm, it was possible to inspect individual GaAs nanorods grown seed‐free through circular openings in a SiNx mask in a periodic array with 3 µm spacing on GaAs[111]B. The focused X‐ray beam allows the determination of the strain state of individual rods and, in combination with coherent diffraction imaging, it was also possible to characterize morphological details. Rods grown either in the centre or at the edge of the array show significant differences in shape, size and strain state.  相似文献   

20.
A differential pump assembly is introduced which can provide a windowless transition between the full atmospheric pressure of an in‐air sample environment and the high‐vacuum region of a synchrotron radiation beamline, while providing a clear aperture of approximately 1 mm to pass through the X‐ray beam from a modern third‐generation synchrotron radiation source. This novel pump assembly is meant to be used as a substitute for an exit vacuum window on synchrotron beamlines, where the existence of such a window would negatively impact the coherent nature of the X‐ray beam or would introduce parasitic scattering, distorting weak scattering signals from samples under study. It is found that the length of beam pipe necessary to reduce atmospheric pressure to below 10 mbar is only about 130 mm, making the expected photon transmission for hard X‐rays through this pipe competitive with that of a regular Be beamline window. This result is due to turbulent flow dominating the first pumping stage, providing a mechanism of strong gas conductance limitation, which is further enhanced by introducing artificial surface roughness in the pipe. Successive reduction of pressure through the transitional flow regime into the high‐vacuum region is accomplished over a length of several meters, using beam pipes of increasing diameter. While the pump assembly has not been tested with X‐rays, possible applications are discussed in the context of coherent and small‐angle scattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号