首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calculations at PM3 and PBE/6‐31G levels of part of the IR spectrum of the formamide‐kaolinite intercalatation compound based on a 110‐atom cluster of kaolinite with one formamide molecule are reported. Frequencies and intensities for the formamide vibrations and stretchings of four cluster hydroxyls were calculated through partial hessian matrices and polar tensors obtained by numerical differentiation of energy gradients and dipole moment. The formamide molecule attaches to the kaolinite inner surfaces in multiple conformations with its CN bond vector parallel to the surfaces. Hydrogen bonds are formed between the formamide hydrogen atoms (both from NH2 or CH groups) and the siloxane surface and between the formamide oxygen and nitrogen atoms and the aluminol hydroxyls. The general features of the experimental assignment of the spectrum are confirmed, but the observed splitting of formamide bands is attributed to vibrations from differently attached molecules. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
Effect of water on the formamide-intercalation of kaolinite   总被引:12,自引:0,他引:12  
The molecular structures of low defect kaolinite completely intercalated with formamide and formamide-water mixtures have been determined using a combination of X-ray diffraction, thermoanalytical techniques, DRIFT and Raman spectroscopy. Expansion of the kaolinite to 10.09 A was observed with subtle differences whether the kaolinite was expanded with formamide or formamide-water mixtures. Thermal analysis showed that greater amounts of formamide could be intercalated into the kaolinite in the presence of water. New infrared bands were observed for the formamide intercalated kaolinites at 3648, 3630 and 3606 cm(-1). These bands are attributed to the hydroxyl stretching frequencies of the inner surface hydroxyls hydrogen bonded to formamide with water, formamide and interlamellar water. Bands were observed at similar positions in the Raman spectrum. At liquid nitrogen temperature, the 3630 cm(-1) Raman band separated into two bands at 3633 and 3625 cm(-1). DRIFT spectra showed the hydroxyl deformation mode at 905 cm(-1). Changes in the molecular structure of the formamide are observed through both the NH stretching vibrations and the amide 1 and 2 bands. Upon intercalation of kaolinite with formamide, bands are observed at 3460, 3344, 3248 and 3167 cm(-1) attributed to the NH stretching vibration of the NH involved with hydrogen bonded to the oxygens of the kaolinite siloxane surface. In the DRIFT spectra of the formamide intercalated kaolinites bands are observed at 1700 and 1671 cm(-1) and are attributed to the amide 1 and amide 2 vibrations.  相似文献   

3.
利用Gaussian 98软件,采用量子化学从头算计算方法,研究有机分子偶氮苯在高岭石表面的吸附作用.不同位置的吸附结果比较表明,吸附后体系稳定性强弱及电子发生转移的可能性大小依次是平行于硅氧烷表面、平行(010)面、平行[AlO4]八面体表面.芳香环上的π键和硅氧烷表面的O原子均相互作用,电子从偶氮苯上的C和N原子流向高岭石表面的O原子.对吸附复合物进行了X射线粉末衍射(XRD)、红外光谱(FTIR)测试及结构分析,结果表明,偶氮苯吸附到高岭石的硅氧烷表面.  相似文献   

4.
The effect of mechanochemical activation upon the intercalation of formamide into a high-defect kaolinite has been studied using a combination of X-ray diffraction, thermal analysis, and DRIFT spectroscopy. X-ray diffraction shows that the intensity of the d(001) spacing decreases with grinding time and that the intercalated high-defect kaolinite expands to 10.2 A. The intensity of the peak of the expanded phase of the formamide-intercalated kaolinite decreases with grinding time. Thermal analysis reveals that the evolution temperature of the adsorbed formamide and loss of the inserting molecule increases with increased grinding time. The temperature of the dehydroxylation of the formamide-intercalated high-defect kaolinite decreases from 495 to 470 degrees C with mechanochemical activation. Changes in the surface structure of the mechanochemically activated formamide-intercalated high-defect kaolinite were followed by DRIFT spectroscopy. Fundamentally the intensity of the high-defect kaolinite hydroxyl stretching bands decreases exponentially with grinding time and simultaneously the intensity of the bands attributed to the OH stretching vibrations of water increased. It is proposed that the mechanochemical activation of the high-defect kaolinite caused the conversion of the hydroxyls to water which coordinates the kaolinite surface. Significant changes in the infrared bands assigned to the hydroxyl deformation and amide stretching and bending modes were observed. The intensity decrease of these bands was exponentially related to the grinding time. The position of the amide C=O vibrational mode was found to be sensitive to grinding time. The effect of mechanochemical activation of the high-defect kaolinite reduces the capacity of the kaolinite to be intercalated with formamide.  相似文献   

5.
Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K   总被引:6,自引:0,他引:6  
The Raman spectra of urea and urea-intercalated kaolinites have been recorded at 77 K using a Renishaw Raman microprobe equipped with liquid nitrogen cooled microscope stage. The NH2 stretching modes of urea were observed as four bands at 3250, 3321, 3355 and 3425 cm(-1) at 77 K. These four bands are attributed to a change in conformation upon cooling to liquid nitrogen temperature. Upon intercalation of urea into both low and high defect kaolinites, only two bands were observed near 3390 and 3410 cm(-1). This is explained by hydrogen bonding between the amine groups of urea and oxygen atoms of the siloxane layer of kaolinite with only one urea conformation. When the intercalated low defect kaolinite was cooled to 77 K, the bands near 3700 cm(-1) attributed to the stretching modes of the inner surface hydroxyls disappeared and a new band was observed at 3615 cm(-1). This is explained by the breaking of hydrogen bonds involving OH groups of the gibbsite-like layer and formation of new bonds to the C=O group of the intercalated urea. Thus it is suggested that at low temperatures two kinds of hydrogen bonds are formed by urea molecules in urea-intercalated kaolinite.  相似文献   

6.
Dimethylsulfoxide (DMSO) kaolinite complexes of low-and high-defect kaolinites were studied by thermo-IR-spectroscopy analysis. Samples were gradually heated up to 170°C, three hours at each temperature. After cooling to room temperature, they were pressed into KBr disks and their spectra were recorded. From the spectra two types of complexes were identified. In the spectrum of type I complex two bands were attributed to asymmetric and symmetric H-O-H stretching vibrations of intercalated water, bridging between DMSO and the clay-O-planes. As a result of H-bonds between intercalated water molecules and the O-planes, Si-O vibrations of the clay framework were perturbed, in the low-defect kaolinite more than in the high-defect. Type II complex was obtained by the thermal escape of the intercalated water. Consequently, the H-O-H bands were absent from the spectrum of type II complex and the Si-O bands were not perturbed. Type I complex was present up to 120°C whereas type II between 130 and 150°C. The presence of intercalated DMSO was proved from the appearance of methyl bands. These bands decreased with temperature due to the thermal evolution of DMSO but disappeared only in spectra of samples heated at 160°C. Intercalated DMSO was H-bonded to the inner-surface hydroxyls and vibrations associated with this group were perturbed. Due to the thermal evolution of DMSO the intensities of the perturbed bands decreased with the temperature. They disappeared at 160°C together with the methyl bands.  相似文献   

7.
N-methylformamide (NMF) and 1-methyl-2-pyrrolidone (NMP) were intercalated with kaolinite, characterized, and deintercalated for analysis (the NMP was intercalated after expansion of the kaolinite layers with NMF). The dynamics of guest molecules within the kaolinite lamellae was studied by means of FT-IR and liquid state (1)H and (13)C NMR on the NMF and NMP before intercalation and also on the deintercalated solutions. Both compounds were deintercalated using water. The FT-IR spectra show no significant differences before and after intercalation, for either NMF or NMP, indicating that there is no change in molecular arrangement as a result of intercalation. (1)H and (13)C NMR investigations supported the findings of the FT-IR and indicated that structural arrangement and orientation of the guest species remain the same after deintercalation. This work provides evidence that intercalation is due to weak physical bonding.  相似文献   

8.
Well-crystallized kaolinite (K) was initially reacted at 60 degrees C with a water/dimethylsulfoxide (DMSO) mixture and the resulting intercalation derivative (K-DMSO) was characterized by powder X-ray diffractometry (PXRD), thermal analysis (simultaneous TG and DSC), and Fourier-transformed infrared spectroscopy (FTIR). Benzamide crystals were then melted with the K-DMSO derivative at 140 degrees C for 4 days, when a gradual displacement of DMSO by benzamide was observed within the interlayer spacing of the modified kaolinite. The resulting material, after extensive washing with acetone, was characterized and compared to the results obtained previously for the K-DMSO composite. Benzamide intercalation proceeded by gradual displacement of DMSO molecules until completion. The structural stabilization of the K-BZ derivative was explained through the establishment of hydrogen bonds between the carbonyl oxygen atoms of the intercalated benzamide and aluminol groups present at the surface of the kaolinite layer. The interlamellar spacing of K-BZ was shown to be possibly occupied by benzamide molecules that were located at a 68 degrees orientation in relation to the layer surface. Unlike most intercalation molecules such as DMSO, variations in the interplanar spacing of kaolinite were consistent with the nonkeying of any other part of the molecule between the aluminosilicate interlayers. Copyright 2000 Academic Press.  相似文献   

9.
Sulfonated polyimides exhibit high strength, good film‐forming ability, chemical resistance, and, in their hydrated state, relatively high proton conductivity. Here we report the one‐pot synthesis of sulfonated polyimide‐polysiloxane segmented copolymers through the reaction of a dianhydride with a mixture of three diamines: a nonionic aromatic diamine (4,4′‐oxydianiline), a sulfonated diamine (4,4′‐diamino‐2,2′‐biphenyldisulfonic acid), and a telechelic diamino polysiloxane. Copolymer compositions were evaluated using 1H NMR and size‐exclusion chromatography. The presence of ion‐containing diamines in the reaction mixture inhibited stoichiometric incorporation of hydrophobic siloxane segments. Siloxane segments were found to lower the thermal stability of the polyimide host. Copolymers with and without siloxane segments were cast into free‐standing films. Equilibrium water sorption studies of cast films show that, for the compositions studied here, the presence of siloxane segments does not interfere with water swelling, suggesting that a microphase‐segregated morphology may exist. TEM and SAXS analyses show evidence of phase‐segregation in sulfonated polyimides and reveal that siloxane segments strongly affect ionic clustering. However, proton conductivity only changes slightly when polysiloxane segments are incorporated. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3747–3758, 2007  相似文献   

10.
The density functional theory(DFT) was used to investigate the adsorptions of carbon dioxide(CO2) on kaolinite surfaces and the influences of Na+ and H2O on the adsorption. Both cluster and periodic models of kaolinite were considered. The calculated results indicate that stable complexes can be formed between adsorbed CO2 and the surfaces of kaolinite in the presence or absence of sodium cation and water molecule. The Al-O octahedral surface has a larger adsorption affinity for CO2 than the Si-O tetrahedral surface of kaolinite because the hydroxyl groups of kaolinite Al-O surface present more activity than the basal O atoms of the Si-O tetrahedral surface in the inter-molecular interactions. The existence of exchangeable sodium cations exerts the significant effect on the adsorption of CO2 with the dramatic increase of the adsorption energy, while the presence of water molecule decreases the adsorption strength insignificantly. The calculated Gibbs free energies of the adsorption reveal that the adsorptions of CO2 on all the investigated kaolinite surfaces are feasible thermodynamically in the gas phase. Surface free energy was calculated to provide the predictions of the surface stability as a function of temperature.  相似文献   

11.
Controlled rate thermal analysis (CRTA) allows the separation of adsorbed and intercalated hydrazine. CRTA displays the presence of three different types of hydrogen-bonded hydrazine in the intercalation complex: (a) The first is adsorbed loosely bonded on the kaolinite structure fully expanded by hydrazine-hydrate and liberated between approx 50 and 70 degrees C (b) The second intercalated hydrazine is lost between approx 70 and 85 degrees C. (c) The third type of intercalated-hydrazine molecule is lost in the 85-130 degrees C range. CRTA at 70 degrees C enables the removal of hydrazine-water and results in the partial collapse of the hydrazine-intercalated kaolinite structure to form a hydrazine-intercalated kaolinite. Removal of the adsorbed hydrazine enables the DRIFT spectra of the hydrazine-intercalated complex without any adsorbed hydrazine to be obtained. A band at 3626 cm(-1) attributed to the inner surface hydroxyls of kaolinite hydrogen bonded to hydrazine is observed. The intercalation of hydrazine-hydrate into kaolinite is complex and results from the different types of surface interactions of the hydrazine with the kaolinite surfaces.  相似文献   

12.
We present first principles molecular dynamics simulations of stretched siloxane oligomers in an environment representative of that present in single molecule atomic force microscopy experiments. We determine that the solvent used (hexamethyldisiloxane) does not influence the stretching of the siloxane in the high force regime or the rupture process, but trace amounts of water can induce rupture before the maximum siloxane extension has been attained. This would result in a significantly lower rupture force. The simulations show that the rupture of a covalent bond through a reaction with a molecule from the environment, which would not normally occur between the species when the polymer is not stressed, is possible, opening a route to mechanically induced chemical reactions. The attack of the normally hydrophobic siloxane by water when it is stretched has wider implications for the material failure under tensile stress, where trace amounts of water could induce tearing of the material.  相似文献   

13.
Layered double hydroxides are a type of layered stacked compound, which can be intercalated with organic‐molecule modifiers. An ion‐exchange process for layered double hydroxide (LDH) was used to intercalate water‐soluble sulfanilic acid salt (SAS) and dimethyl 5‐sulfoisopthalate (DMSI) into lithium aluminum layered double hydroxides (LiAl LDHs). In this work, a hydrothermal process was used to modify LiAl LDHs, and the modified LiAl LDHs were treated with either SAS or DMSI through an ion‐exchange process and were then intercalated using bis‐hydroxyethylene terephthalate (BHET). The results indicate that the modified LiAl LDHs improved the interlayer compatibility between the PET and LiAl LDH layers; thus, enabling the oligomer molecules to more easily enter the gallery of the LiAl LDH layers so that polymer chains could be included between the LDH layers during polymerization of the matrix. The better barrier, mechanical properties, and thermal stability of these new types of PET nanocomposites are discussed.  相似文献   

14.
Kaolinite has been mechanochemically activated by dry grinding for periods of time up to 10 h. The kaolinite was then intercalated with potassium acetate and the changes in the structure followed by DRIFT spectroscopy. Intercalation of the kaolinite with potassium acetate is difficult and only the layers, which remain hydrogen bonded, are intercalated. The mechanochemical activation of the kaolinite may be followed by the loss of intensity of the hydroxyl-stretching vibrations. The intensity of the 3695 and 3619 cm(-1) bands reach a minimum after 10 h of grinding. The observation of a band at 3602 cm(-1) is indicative of the intercalation of the kaolinite with potassium acetate. The degree of intercalation decreases with mechanochemical treatment. The effect of exposure of the intercalated mechanochemically activated kaolinite to moist air results in de-intercalation. The effect of the mechanochemical treatment is loss of layer stacking, which prevents the intercalation of the kaolinite.  相似文献   

15.
A size‐selected argon (Ar) gas‐cluster ion beam (GCIB) was applied to the secondary ion mass spectrometry (SIMS) of a 1,4‐didodecylbenzene (DDB) thin film. The samples were also analyzed by SIMS using an atomic Ar+ ion projectile and X‐ray photoelectron spectroscopy (XPS). Compared with those in the atomic‐Ar+ SIMS spectrum, the fragment species, including siloxane contaminants present on the sample surface, were enhanced several hundred times in the Ar gas‐cluster SIMS spectrum. XPS spectra during beam irradiation indicate that the Ar GCIB sputters contaminants on the surface more effectively than the atomic Ar+ ion beam. These results indicate that a large gas‐cluster projectile can sputter a much shallower volume of organic material than small projectiles, resulting in an extremely surface‐sensitive analysis of organic thin films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
PEG在微波诱导下对高岭石插层及剥片的研究   总被引:6,自引:0,他引:6  
张先如  孙嘉  徐政 《无机化学学报》2005,21(9):1321-1326
利用微波能量,快速制备了高岭石/DMSO插层复合物,并以其为前驱体,在熔融状态,微波诱导聚乙二醇(PEG)置换出高岭石层间的DMSO,微波继续协同PEG作用,可以实现其对高岭石的剥片。同时提出了微波作用机理和微波条件下插层物对高岭石的剥片机理。采用X-射线衍射、FTIR光谱、TG-DTA、TEM等技术对插层复合物进行了表征。  相似文献   

17.
Infrared spectroscopy has been used to study the adsorption of para-nitrophenol on mono-, di- and tri-alkyl surfactant intercalated montmorillonite. Organoclays were obtained by the cationic exchange of mono-, di- and tri-alkyl chain surfactants for sodium ions [hexadecyltrimethylammonium bromide (HDTMAB), dimethyldioctadecylammonium bromide (DDOAB), methyltrioctadecylammonium bromide (MTOAB)] in an aqueous solution with Na-montmorillonite. Upon formation of the organoclay, the properties change from strongly hydrophilic to strongly hydrophobic. This change in surface properties is observed by a decrease in intensity of the OH stretching vibrations assigned to water in the cation hydration sphere of the montmorillonite. As the cation is replaced by the surfactant molecules, the para-nitrophenol replaces the surfactant molecules in the clay interlayer. Bands attributed to CH stretching and bending vibrations change for the surfactant intercalated montmorillonite. Strong changes occur in the HCH deformation modes of the methyl groups of the surfactant. These changes are attributed to the methyl groups locking into the siloxane surface of the montmorillonite. Such a concept is supported by changes in the SiO stretching bands of the montmorillonite siloxane surface. This study demonstrates that para-nitrophenol will penetrate into the untreated clay interlayer and replace the intercalated surfactant in surfactant modified clay, resulting in the change of the arrangement of the intercalated surfactant.  相似文献   

18.
We report on microscopic observation of solvation by argon atoms of excited states of an ethylenic-like molecule, TDMAE (tetrakis dimethylaminoethylene). Two experimental methods were used: gas phase dynamics for the observation of the evolution through excited states, matrix isolation spectroscopy for characterization of the initial states. Excited state dynamics was recorded after the molecule had been deposited on the surface of a large argon cluster (n approximately 100) by pick-up. The deposited cluster was characterized by mass spectrometry and by its shifted photoelectron spectrum. The time evolution of the system was visualized by femtosecond pump/probe velocity map imaging of photoelectrons. The time evolution of deposited TDMAE excited at 266 nm can be modeled via a modified three state model, as in the free molecule. The initially excited state is of valence character, and a Rydberg state mediates the passage to a zwitterionic configuration. The specific solvation of Rydberg states by the surface of the cluster was directly observed and is discussed. It represents the striking outcome of the present work. It is inferred that differently from the gas phase, solvated Rydberg states resulting from state mixing within a R(n/lambda) complex in the presence of the argon surface are reached. Solvation of these Rydberg states should be effective through interaction of the ion core of the excited molecules with the cluster.  相似文献   

19.
Vibrational spectroscopy of formamide-intercalated kaolinites   总被引:2,自引:0,他引:2  
The vibrational spectroscopy of low and high defect kaolinites fully and partially intercalated with formamide have been determined using a combination of X-ray diffraction, DRIFT and Raman spectroscopy. Expansion of the high defect kaolinite to 10.09 A resulted in a decrease in the peak width of the d(001) peak attributed to a decrease in defect structures upon intercalation. Changes in the defect structures of the low defect kaolinite were observed. Additional infrared bands were observed for the formamide intercalated kaolinites at 3629 and 3606 cm(-1). The 3629 cm(-1) band is attributed to the hydroxyl stretching frequency of the inner surface hydroxyl group hydrogen bonded to the carboxyl group of the formamide. The 3606 cm(-1) band is ascribed to water in the interlayer. Concomitant changes are observed in both the hydroxyl deformation modes and in the carboxyl bands.  相似文献   

20.
粘土矿已经被广泛用来去除有机物,修复和净化被石油碳氢化合物污染的土壤和地下水. 我们选择高岭石作为研究对象,构造了Si6O18H12和Al6O24H30两个团簇模型分别代表高岭石的硅氧层表面和铝氧层表面,在MP2/6-31G(d,p)//B3LYP/6-31G(d,p)的理论水平上系统地研究了气态下苯分子和高岭石团簇模型的相互作用. 并进一步分析了苯分子和高岭石表面相互作用的各种气态性质,比如:优化的几何构型、结构参数、吸附能、自然键轨道电荷分布、振动频率变化、静电势、电子密度性质(次级氢键的电子密度和拉普拉斯算符值)和电子密度差分等. 优化的几何构型表明苯分子吸附在高岭石表面的本质可能是次级氢键的形成. 其他性质的结果进一步验证了次级氢键的存在,并指出苯更倾向于吸附在高岭石的铝氧层表面,且苯环和铝氧层表面形成近似90°的夹角.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号