首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The exchange bias phenomenon has been investigated in multiferroic Eu0.75Y0.25MnO3. The material shows a weak ferromagnetism with cone spin configuration induced by external magnetic field below 30 K. Consequently, the electric polarization coming from the cycloid spin order below 30 K can be suppressed by external magnetic fields. The magnetic hysteresis loops after cooling in a magnetic field exhibit characteristics of exchange bias below the spin glassy freezing temperature (Tg)∼16 K. The exchange bias field, coercivity field, and remanent magnetization increase with increasing cooling magnetic field. The exchange bias effect is ascribed to the frozen uncompensated spins at the antiferromagnetism/weak ferromagnetism interfaces in the spin-glass like phase.  相似文献   

2.
We report the magnetic properties in the nanosized charge ordering manganite La0.2Ca0.8MnO3 with an average particle size ~50 nm. The sample exhibits ferromagnetism at low temperatures. The exchange bias phenomenon is observed when the sample is cooled down in an external magnetic field. Moreover, the exchange bias field is dependent on the cooling field and shows a maximum of ~520 Oe under a cooling field ~5 kOe. The exchange bias effect can be attributed to the exchange coupling between the ferromagnetic shell and antiferromagnetic core. The decrease of exchange bias field in high cooling field can be attributed to the growth of ferromagnetic component under high cooling field.  相似文献   

3.
Training effects in a new class of exchange biased ferromagnet/antiferromagnet/ferromagnet trilayers (Co/NiO/[Co/Pt]3) with mutually orthogonal easy axes have been measured and successfully modeled. Previous experiments have demonstrated an enhanced blocking temperature as well as the ability to isothermally field tune the magnitude of the room temperature in-plane exchange bias. These effects have been attributed to the presence of the [Co/Pt] multilayer with perpendicular magnetic anisotropy, which variably pins the backside NiO domains. Here we show that the tuning of the exchange bias and the blocking temperature enhancement are highly dependent on both the temperature and the in-plane remanence of the normally out-of-plane [Co/Pt] multilayer, achieved using modest in-plane set fields. Training effects and their dependence on temperature and in-plane remanence are modeled using a thermodynamic approach. The in-plane remanence of the [Co/Pt] acts only to set the equilibrium exchange bias value and sets the scale for the blocking temperature; it has no effect on the training. We conclude that training effects occur only at the Co/NiO interface and that the relaxation towards equilibrium is confined to this interface. The field enhanced blocking temperature and isothermal tuning of exchange bias in these magnetic heterostructures with mutually orthogonal easy axes could play a role in the enhancement of exchange bias effects in future spin-valve devices. A thorough knowledge of the training effects is essential to account for the fundamental relaxation mechanisms that occur with repeated field cycling.  相似文献   

4.
We observe the negative shift of the magnetic hysteresis loop at 5 K, while the sample is cooled in external magnetic field in case of 30% of Fe substitution in LaMnO3. The negative shift and training effect of the hysteresis loops indicate the phenomenon of exchange bias. The cooling field dependence of the negative shift increases with the cooling field below 7.0 kOe and then, decreases with further increase of cooling field. The temperature dependence of the negative shift of the hysteresis loops exhibits that the negative shift decreases sharply with increasing temperature and vanishes above 20 K. Temperature dependence of dc magnetization and ac susceptibility measurements show a sharp peak (Tp) at 51 K and a shoulder (Tf) around 20 K. The relaxation of magnetization shows the ferromagnetic and glassy magnetic components in the relaxation process, which is in consistent with the cluster-glass compound.  相似文献   

5.
在相分离La0.33Pr0.34Ca0.33MnO3薄膜体系中发现了大的交换偏置效应.在4 K时,交换偏置场的大小达到了约1 kOe.交换偏置效应可能源自薄膜内禀的电子相分离特性或薄膜的表面效应.交换偏置效应表现出强的温度、冷却磁场以及厚度依赖的关系.  相似文献   

6.
A Ni80Fe20/(Ni,Fe)O thin film exhibits a positive exchange bias when cooled in a zero field and a negative exchange bias when field cooled. With transmission electron microscopy and electron energy loss spectrometry, the composition and magnetic structure has been ascertained and a distribution of magnetization easy axes about the interface extrapolated. The results indicate that the positive exchange bias is from antiferromagnetic interface moments perpendicular to their ferromagnetic counterparts. With field cooling the alignment is put into a parallel configuration resulting in a negative exchange bias.  相似文献   

7.
We have fabricated exchange-biased Co/Pt layers ((0.3 nm/1.5 nm)×3) on (0 0 1)-oriented Cr2O3 thin films. The multilayered films showed extremely smooth surfaces and interfaces with root mean square roughness of ≈0.3 nm for 10 μm×10 μm area. The Cr2O3 films display sufficient insulation with a relative low leakage current (1.17×10−2 A/cm2 at 380 MV/m) at room temperature which allowed us to apply electric field as high as 77 MV/m. We find that the sign of the exchange bias and the shape of the hysteresis loops of the out-of-plane magnetized Co/Pt layers can be delicately controlled by adjusting the magnetic field cooling process through the Néel temperature of Cr2O3. No clear evidence of the effect of electric field and the electric field cooling was detected on the exchange bias for fields as high as 77 MV/m. We place the upper bound of the shift in exchange bias field due to electric field cooling to be 5 Oe at 250 K.  相似文献   

8.
Monte Carlo simulations have been used to study the relationship between the exchange bias properties and the interface roughness in coupled ferromagnetic/antiferromagnetic (FM/AFM) films of classical Heisenberg spins. It is shown that the variation of the exchange bias field versus the AFM anisotropy strongly depends on the FM/AFM interface. Unlike the flat interface, a non-monotonic dependence is observed for the roughest FM/AFM interface. This is explained by canted magnetic configurations at the FM/AFM interface, which appear after the first reversal due to the magnetic frustration. The temperature dependence of the exchange field is also dependent on the roughness. While the exchange field is roughly constant for the flat interface, a decrease is observed for the roughest interface as the temperature increases. This has been interpreted as a significant decrease of the effective coupling between the FM and the AFM due to the disordering of the moments at the FM/AFM interface because of the combination of magnetic frustration and temperature activation.  相似文献   

9.
Magnetic properties of electron-doped La0.23Ca0.77MnO3 manganite nanoparticles, with average size of 12 and 60?nm, prepared by the glycine?Cnitrate method, have been investigated in the temperature range 5?C300?K and magnetic fields up to 90?kOe. It is suggested that weak ferromagnetic moment results from ferromagnetic shells of the basically antiferromagnetic nanoparticles and from domains of frustrated disordered phase in the core. Assumption of two distinct sources of ferromagnetism is supported by the appearance of two independent ferromagnetic contributions in the fit of the T 3/2 Bloch law to spontaneous magnetization. The ferromagnetic components, which are more pronounced in smaller particles, occupy only a small fraction of the nanoparticle volume and the antiferromagnetic ground state remains stable. It is found that the magnetic hysteresis loops following field cooled processes, display size-dependent horizontal and vertical shifts, namely, exhibiting exchange bias effect. Time-dependent magnetization dynamics demonstrating two relaxation rates were observed at constant magnetic fields upon cooling to T?<?100?K.  相似文献   

10.
Exchange bias (EB) of multiferroics presents many potential opportunities for magnetic devices. However, instead of using low-temperature field cooling in the hysteresis loop measurement, which usually shows an effective approach to obtain obvious EB phenomenon, there are few room temperature EB. In this article, extensive studies on room temperature EB without field cooling were observed in BiFeO3 nano- and microcrystals. Moreover, with increasing size the hysteresis loops shift from horizontal negative exchange bias (NEB) to positive exchange bias (PEB). In order to explain the tunable EB behaviors with size dependence, a phenomenological qualitative model based on the framework of antiferromagnetic (AFM) core-two-dimensional diluted antiferromagnet in a field (2D-DAFF) shell structure was proposed. The training effect (TE) ascertained the validity of model and the presence of unstable magnetic structure using Binek’s model. Experimental results show that the tunable EB effect can be explained by the competition of ferromagnetic (FM) exchange coupling and AFM exchange coupling interaction between AFM core and 2D-DAFF shell. Additionally, the local distortion of lattice fringes was observed in hexagonal-shaped BiFeO3 nanocrystals with well-dispersed behavior. The electrical conduction properties agreed well with the space charge-limited conduction mechanism.  相似文献   

11.
A. Jabar 《Phase Transitions》2018,91(3):284-292
The magnetic properties and magnetocaloric effect in YMnO3 have been investigated using Monte Carlo simulations. The thermal magnetization, specific heat and magnetic entropy have been obtained for different values of exchange interactions and for a several external magnetic field values. The variation of adiabatic temperature change with the temperatures has been obtained for several values of external magnetic field. It has been found that the sample exhibited a paramagnetic to ferromagnetic phase transition at 30 K. The transition temperature of YMnO3 has been deduced for different values of size (1/L) and different values of exchange interactions. The relative cooling power with several values of external magnetic field has been established.  相似文献   

12.
Nanoparticles of ɛ-Fe2.8Cr0.2N system exhibit the exchange bias phenomenon due to the exchange coupling of the spins of the antiferromagnetic (AF) oxide/oxynitride surface layer and the ferromagnetic (FM) nitride core. Exchange bias is observed at 10 K both in the absence and presence of cooling field. Due to the interface disorder, a mixture of parallel and anti-parallel/perpendicular coupling of the AF and FM spins is observed. The roughness of AF-FM interface induces disorder due to the random exchange anisotropy. The saturation magnetization is also found to be drastically lowered as compared to parent ɛ-Fe3N. Below 58 K, the broad peak (T E T f ) in zero-field cooled (ZFC) magnetization curves indicates the presence of unidirectional anisotropy and spinglass-like ordering, that arises from the freezing of localized frustrated spins.   相似文献   

13.
FeNi/FeMn/GdxCo100-x multilayered films were prepared by magnetron sputtering. The Gd–Co layer had different temperature dependences of the spontaneous magnetization due to the different Gd content. The magnetic properties of the films were determined from hysteresis loops measured in the temperature range 5–473 K. In order to determine the existence of a long-range interaction and a mutual influence of two exchange bias systems through the formation of bulk continuous magnetic structure in the antiferromagnetic layer special cooling procedure with FeNi and Gd–Co magnetizations saturated in a direction parallel or antiparallel to each other was used. The observed difference in the exchange bias between the two cooling configurations was discussed.  相似文献   

14.
Magnetic properties of zero field cooled (ZFC) and field cooled (FC) sample of (Mn,Fe)2O3−t nanograins have been investigated by magnetometry (up to 70 kOe) and Mössbauer spectroscopy (up to 60 kOe) in the temperature interval 4.2–300 K. Large horizontal (up to 0.8 kOe) and vertical (up to 80%) shifts of the magnetization hysteresis loops are observed in the FC regime. The obtained results are discussed in terms of exchange interaction between an antiferromagnetic core and a spin-glass-like state of the nanograins boundaries. It is shown that hysteresis loop shifts (horizontal and vertical) depend on the field cooling magnitude, an effect that can be understood by the change of the boundary magnetic structure induced by the external magnetic field. The vertical magnetization shift is described by a phenomenological model, which takes into account the magnetic interaction between the spin-glass like boundary spins and the applied field.  相似文献   

15.
The magnetic properties of Mo/IrMn/Co/Mo/SiO2/Si structures with alternative sequences of the antiferromagnetic and ferromagnetic layers have been studied by measuring the angular dependence of the high-frequency radiation absorption in the ferromagnetic resonance region. The layers have been prepared by pulsed laser deposition in the absence of a magnetic field. It has been found that thermal annealing and cooling make it possible to create the exchange bias in the structure with the upper antiferromagnetic layer at a temperature much below the Néel temperature. At the same time, the identical heat treatment does not induce the exchange bias in the structure with the upper ferromagnetic layer. The possible mechanisms of the phenomena observed are discussed.  相似文献   

16.
Single phase nanocrystalline YFeO3 has been synthesized by a simple solution method. The average particle diameter is 42.2 nm. The particles exhibit ferromagnetic behaviour in the temperature range 10-300 K with a coercivity of 23 kOe. The magnetization versus temperature over the temperature range 2-300 K obeys Bloch equation with a Bloch constant value 9.98×10−6 K−3/2. Ferromagnetic hysteresis loops have been observed up to a temperature of 300 K. At 10 K a field-cooled sample shows an exchange bias field.  相似文献   

17.
《Current Applied Physics》2018,18(2):261-266
The polycrystalline sample La1.5Sr0.5Co0.4Fe0.6MnO6 (LSCFMO) was prepared by sol-gel method and its magnetic properties were studied. The interesting magnetization reversal phenomenon and the zero-field cooled exchange bias (ZEB) effect were simultaneously observed in LSCFMO. ZEB effect can exist in a wider temperature range (0–200 K) compared with La1.5Sr0.5CoMnO6 (0–10 K), which is very important in the potential applications. A schematic diagram based on the coupling between the Fe3+ spins, Mn3+ spins and Co2+ or Co3+ spins is used to understand the ZEB and the reversal behaviors. Due to the doping of 60% Fe ion, the magnetic microstructure of LSCMFO is more complex than that of LSCMO, resulting in the meta-stable spin structure and more interesting magnetic phenomenon.  相似文献   

18.
Co-doped NiO inhomogeneous films were synthesized by sputtering metallic Co chips and NiO together and the exchange bias of bilayers Co-doped NiO/FeNi was investigated. When Co content was up to 25.2%, the exchange bias field HE at the room temperature increased to the maximum which was about three times compared to the undoped-bilayers. With further increase of Co content, the exchange bias field HE and blocking temperature TB decreased. Analysis suggests that the configuration of nanometer-sized Co-metal clusters enchased into NiO matrix played an important role in the change of magnetic behavior for the bilayers.  相似文献   

19.
Nanocrystalline Cr2O3 and NiO are prepared using high-energy ball milling. Average sizes of the particles obtained from Scanning Electron Microscopy and crystallite sizes obtained from X-ray diffraction are larger for Cr2O3 than NiO particles. At low temperature, large high-field magnetization and small coercivity lead to a weak exchange bias for Cr2O3, whereas small high-field magnetization and large coercivity lead to a considerable exchange bias for NiO. The training effect is observed for NiO at 4 K which could be described with a recursive formula constructed in the framework of the spin configurational relaxation model. The results suggest that the pinning mechanism at the interface between the antiferromagnetic and the weak ferromagnetic component ascribed to uncompensated spins leads to the exchange bias effect.  相似文献   

20.
We performed a systematic study on the exchange bias in (1 1 0)-orientated Bi0.9La0.1FeO3/La0.5Ca0.5MnO3 (BLFO/LCMO) heterostructure with a fixed BLFO film thickness of 600 nm and different LCMO layers ranging from t=0 to 30 nm. The LCMO is found to be weakly ferromagnetic, with the Curie temperature descending from ∼225 K to 0 as the layer thickness decreases from 30 nm to 3 nm. The main magnetic contributions come from the BLFO film, and the areal magnetization ratio is 1:0.07 for t=5 nm and 1:0.82 for t=30 nm for BLFO to LCMO at the temperature of 5 K. Further experiments show the presence of significant exchange bias, and it is, at the temperature of 10 K, ∼40 Oe for t=0 and ∼260 Oe for t=30 nm. The exchange bias reduces dramatically upon warming and disappears above the blocking temperature of the spin-glasslike behavior observed in the samples. The possible origin for exchange bias is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号