首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This Note presents a comparison of some recently developed “second-order” homogenization estimates for two-dimensional, ideally plastic porous media subjected to plane strain conditions with corresponding yield analysis results using a new linearization technique and systematically optimized finite elements meshes. Good qualitative agreement is found between the second-order theory and the yield analysis results for the shape of the yield surfaces, which exhibit a corner on the hydrostatic axis, as well as for the dependence of the effective flow stress in shear on the porosity, which is found to be non-analytic in the dilute limit. Both of these features are inconsistent with the predictions of the standard Gurson model. To cite this article: J. Pastor, P. Ponte Castañeda, C. R. Mecanique 330 (2002) 741–747.  相似文献   

2.
3.
This paper presents the application of a recently proposed ‘second-order’ homogenization method (J. Mech. Phys. Solids 50 (2002) 737–757) to the estimation of the effective behavior of hyperelastic composites subjected to finite deformations. The main feature of the method is the use of ‘generalized’ secant moduli that depend not only on the phases averages of the fields, but also on the phase covariance tensors. The use of the method is illustrated in the context of particle-, or fiber-reinforced elastomers and estimates analogous to the well-known Hashin–Shtrikman estimates for linear-elastic composites are generated. The new estimates improve on earlier estimates (J. Mech. Phys. Solids 48 (2000) 1389–1411) neglecting the use of fluctuations. In particular, the new estimates, unlike the earlier ones, are capable of recovering the exact incompressibility constraint when the matrix is also taken to be incompressible. To cite this article: O. Lopez-Pamies, P. Ponte Castañeda, C. R. Mecanique 331 (2003).  相似文献   

4.
This Note presents a new approximate scheme for nonlinear composites. The approximation which is made preserves certain features of the original second-order scheme of Ponte Castañeda, exactness to second-order in the contrast and existence of an effective energy, but improves on one drawback, which is the gap between the strain-energy formulation and the affine formulation. A numerical example shows the accuracy of the present method. To cite this article: N. Lahellec, P. Suquet, C. R. Mecanique 332 (2004).  相似文献   

5.
This study is devoted to the mechanical behavior of uranium dioxide (UO2) which is a porous material with two populations of voids of very different size subjected to internal pressure. The smallest voids are intragranular and spherical in shape whereas the largest pores located at the grain boundary are ellipsoidal and randomly oriented. In this first part of the study, attention is focused on the effective properties of these materials with fixed microstructure. In a first step, the poro-elastic properties of these doubly voided materials are studied. Then two rigorous upper bounds are derived for the effective poro-plastic constitutive relations of these materials. The first bound, obtained by generalizing the approach of Gologanu et al. (Gologanu, M., Leblond, J., Devaux, J., 1994. Approximate models for ductile metals containing non-spherical voids-case of axisymmetric oblate ellipsoidal cavities. ASME J. Eng. Mater. Technol. 116, 290–297) to compressible materials, is accurate at high stress-triaxiality. The second one, which derives from the variational method of Ponte Castañeda (Ponte Castañeda, P., 1991. The effective mechanical properties of non-linear isotropic composites. J. Mech. Phys. Solids 39, 45–71), is accurate when the stress triaxiality is low. A N-phase model, inspired by Bilger et al. (Bilger, N., Auslender, F., Bornert, M., Masson, R., 2002. New bounds and estimates for porous media with rigid perfectly plastic matrix. C.R. Mécanique 330, 127–132), is proposed which matches the best of the two bounds at low and high triaxiality. The effect of internal pressures is discussed. In particular it is shown that when the two internal pressures coincide, the effective flow surface of the saturated biporous material is obtained from that of the drained material by a shift along the hydrostatic axis. However, when the two pressures are different, the modifications brought to the effective flow surface in the drained case involve not only a shift along the hydrostatic axis but also a change in shape and size of the surface.  相似文献   

6.
This paper presents a combined numerical-theoretical study of the macroscopic behavior and local field distributions in a special class of two-dimensional periodic composites with viscoplastic phases. The emphasis is on strongly nonlinear materials containing pores or rigid inclusions. Full-field numerical simulations are carried out using a fast Fourier transform algorithm [Moulinec, H., Suquet, P., 1994. A fast numerical method for computing the linear and nonlinear properties of composites. C. R. Acad. Sci. Paris II 318, 1417–1423.], while the theoretical results are obtained by means of the ‘second-order’ nonlinear homogenization method [Ponte Castañeda, P., 2002. Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. I. Theory. J. Mech. Phys. Solids 50, 737–757]. The effect of nonlinearity and inclusion concentration is investigated in the context of power-law (with strain-rate sensitivity m) behavior for the matrix phase under in-plane shear loadings. Overall, the ‘second-order’ estimates are found to be in good agreement with the numerical simulations, with the best agreement for the rigidly reinforced materials. For the porous systems, as the nonlinearity increases (m decreases), the strain field is found to localize along shear bands passing through the voids (the strain fluctuations becoming unbounded) and the effective stress exhibits a singular behavior in the dilute limit. More specifically, for small porosities and fixed nonlinearity m>0, the effective stress decreases linearly with increasing porosity. However, for ideally plastic behavior (m=0), the dependence on porosity becomes non-analytic. On the other hand, for rigidly-reinforced composites, the strain field adopts a tile pattern with bounded strain fluctuations, and no singular behavior is observed (to leading order) in the dilute limit.  相似文献   

7.
This work is concerned with the generalization of the “variational linear comparison” method of Ponte Castañeda (J. Mech. Phys. Solids 39 (1991) 45)) to multi-scale, random, heterogeneous material systems with nonlinear isotropic constituents. This method has the distinguishing feature of allowing the conversion of bounds or estimates that might be available for linear systems into corresponding bounds or estimates for the nonlinear composites of interest. Furthermore, the method is fairly simple to implement and quite general. General estimates are developed for two-scale systems and applied to various model composites with “particulate” and “granular” micro- and meso-structures, and compared with the corresponding results for their single-scale counterparts. It is found that the way that the material heterogeneity is distributed at the two separate scales can in most cases have a significant effect on the macroscopic behavior of the composite system.  相似文献   

8.
《Comptes Rendus Mecanique》2017,345(5):353-361
For linear composite conductors, it is known that the celebrated Hashin–Shtrikman bounds can be recovered by the translation method. We investigate whether the same conclusion extends to nonlinear composites in two dimensions. To that purpose, we consider two-phase composites with perfectly conducting inclusions. In that case, explicit expressions of the various bounds considered can be obtained. The bounds provided by the translation method are compared with the nonlinear Hashin–Shtrikman-type bounds delivered by the Talbot–Willis (1985) [2] and the Ponte Castañeda (1991) [3] procedures.  相似文献   

9.
We use the second-order procedure of P. Ponte Castañeda to estimate the hyperelastic behavior of periodic composites. The results obtained for a fiber-reinforced composite show that the accuracy of the homogenized energy estimated using this procedure is excellent in the case of compressible materials and poor in the case of quasi-incompressible materials. Then we develop a new formulation for incompressible materials using a Lagrange multiplier which improves the quality of the estimate given by the procedure.  相似文献   

10.
This work presents a homogenization-based constitutive model for the mechanical behavior of elastomers reinforced with aligned cylindrical fibers subjected to finite deformations. The proposed model is derived by making use of the second-order homogenization method [Lopez-Pamies, O., Ponte Castañeda, P., 2006a. On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations: I—theory. J. Mech. Phys. Solids 54, 807–830], which is based on suitably designed variational principles utilizing the idea of a “linear comparison composite.” Specific results are generated for the case when the matrix and fiber materials are characterized by generalized Neo-Hookean solids, and the distribution of fibers is periodic. In particular, model predictions are provided and analyzed for fiber-reinforced elastomers with Gent phases and square and hexagonal fiber distributions, subjected to a wide variety of three-dimensional loading conditions. It is found that for compressive loadings in the fiber direction, the derived constitutive model may lose strong ellipticity, indicating the possible development of macroscopic instabilities that may lead to kink band formation. The onset of shear band-type instabilities is also detected for certain in-plane modes of deformation. Furthermore, the subtle influence of the distribution, volume fraction, and stiffness of the fibers on the effective behavior and onset of macroscopic instabilities in these materials is investigated thoroughly.  相似文献   

11.
A micromechanics framework for porous elastomers with internal pore pressure (Idiart and Lopez-Pamies, 2012) is used together with an earlier homogenization estimate for elastomers containing vacuous pores (Lopez-Pamies and Ponte Castañeda, 2007a) to investigate the mechanical response and stability of closed-cell foams. Motivated by applications of technological interest, the focus is on isotropic foams made up of a random isotropic distribution of pores embedded in an isotropic matrix material, wherein the initial internal pore pressure is identical to the external pressure exerted by the environment (e.g. atmospheric pressure). It is found that the presence of internal pore pressure significantly stiffens and stabilizes the response of elastomeric foams, and hence that it must be taken into account when modeling this type of materials.  相似文献   

12.
An approximate homogenization method is proposed and used to obtain estimates for the effective constitutive behavior and associated microstructure evolution in hyperelastic composites undergoing finite-strain deformations. The method is a modified version of the “tangent second-order” procedure (Ponte Castañeda and Tiberio in J. Mech. Phys. Solids 48:1389, 2000), and can be used to provide estimates for the nonlinear elastic composites in terms of corresponding estimates for suitably chosen “linear comparison composites”. The method makes use of the “tangent” moduli of the phases, evaluated at suitable averages of the deformation gradient, and yields a constitutive relation accounting for the evolution of characteristic features of the underlying microstructure in the composites, when subjected to large deformations. Satisfaction of the exact, macroscopic incompressibility constraint is ensured by means of an energy decoupling approximation splitting the elastic energy into a purely “distortional” component, together with a “dilatational” component. The method is applied to elastomers containing random distributions of aligned, rigid, ellipsoidal inclusions, and explicit analytical estimates are obtained for the special case of spherical inclusions distributed isotropically in an incompressible neo-Hookean matrix. In addition, the method is also applied to two-dimensional composites with random distributions of aligned, elliptical fibers, and the results are compared with corresponding results of earlier homogenization estimates and finite element simulations.  相似文献   

13.
The magnetoelastic homogenization framework and the partial decoupling approximation proposed by Ponte Castañeda and Galipeau (2011) are used to estimate material properties for a class of magnetically susceptible elastomers. Specifically, we consider composites consisting of aligned, ellipsoidal magnetic particles distributed randomly with “ellipsoidal” symmetry under combined magnetic and mechanical loading. The model captures the coupling between the magnetic and mechanical fields, including the effects of magnetic saturation. The results help elucidate the effects of particle shape, distribution, and concentration on properties such as the magnetostriction, actuation stress, magnetic modulus, and magnetization behavior of a magnetorheological composite.  相似文献   

14.
A new method for determining the overall behavior of composite materials comprised of linear viscoelastic constituents is presented. Unlike classical methods which are based on the Laplace transform, the present method operates directly in the time-domain. Upon use of an implicit time-discretization scheme, the evolution equations describing the constitutive behavior of the phases can be reduced to the minimization of an incremental energy function. This minimization problem is rigorously equivalent to a linear thermoelastic problem with a transformation strain which is a nonuniform field (not even uniform within the phases). The variational technique of Ponte Castañeda is used to approximate the nonuniform eigenstrains by piecewise uniform eigenstrains. The latter problem is amenable to simpler calculations and analytical results for appropriate microstructures can be obtained. The accuracy of the proposed scheme is assessed by comparison of the method with exact results obtained either by full finite element simulations in time-domain or by available analytical results obtained by the Laplace transform.  相似文献   

15.
Interactions in linear elastic solids containing inhomogeneities are examined using integral equations. Direct and reflected interactions are identified. Direct interactions occur simply because elastic fields emitted by inhomogeneities affect each other. Reflected interactions occur because elastic fields emitted by inhomogeneities are reflected by the specimen boundary back to the individual inhomogeneities. It is shown that the reflected interactions are of critical importance to analysis of representative volume elements. Further, the reflected interactions are expressed in simple terms, so that one can obtain explicit approximate expressions for the effective stiffness tensor for linear elastic solids containing ellipsoidal and non-ellipsoidal inhomogeneities. For ellipsoidal inhomogeneities, the new approximation is closely related to that of Mori and Tanaka. In general, the new approximation can be used to recover Ponte Castañeda–Willis׳ and Kanaun–Levin׳s approximations. Connections with Maxwell׳s approximation are established.  相似文献   

16.
The present work is concerned with the determination of the effective thermal conductivity of porous rocks or rock-like composites composed by multiple solid constituents, in partially saturated conditions. Based on microstructure observations, a two-step homogenization scheme is developed: the first step for the solid constituents only, and the second step for the (already homogenized) solid matrix and pores. Several homogenization schemes (dilute, Mori–Tanaka, the effective field method and Ponte Castañeda–Willis technique) are presented and compared in this context. Such methods are allowing: (i) to incorporate in the modellization the physical parameters (mineralogy, morphology) influencing the effective properties of the considered material, and the saturation degree of the porous phase; (ii) to account for interaction effects between matrix and inhomogeneities; (iii) to consider different spatial distributions of inclusions (spherical, ellipsoïdal). An orientation distribution function (ODF) permits simultaneously to incorporate in the modelling the transverse isotropy of pore systems. Appearing as homogeneous at the macroscopic scale, it is showed that the effective conductivity depends on the physical properties of all subsidiary phases (microscopic inhomogeneities). By considering the solution of a single ellipsoïdal inhomogeneity in the homogenization problem it is possible to observe the significant influence of the geometry, shape and spatial distribution of inhomogeneities on the effective thermal conductivity and its dependence with the saturation degree of liquid phase. The predictive capacities of the two-step homogenization method are evaluated by comparison with experimental results obtained for an argillite.  相似文献   

17.
In this work, we derive a closed-form criterion for the onset of cavitation in compressible, isotropic, hyperelastic solids subjected to non-symmetric loading conditions. The criterion is based on the solution of a boundary value problem where a hyperelastic solid, which is infinite in extent and contains a single vacuous inhomogeneity, is subjected to uniform displacement boundary conditions. By making use of the “linear-comparison” variational procedure of Lopez-Pamies and Ponte Castañeda (J. Mech. Phys. Solids 54:807–830, 2006), we solve this problem approximately and generate variational estimates for the critical stretches applied on the boundary at which the cavity suddenly starts growing. The accuracy of the proposed analytical result is assessed by comparisons with exact solutions available from the literature for radially symmetric cavitation, as well as with finite element simulations. In addition, applications are presented for a variety of materials of practical and theoretical interest, including the harmonic, Blatz-Ko, and compressible Neo-Hookean materials.  相似文献   

18.
A systematic methodology for an accurate evaluation of various existing linearization procedures sustaining mean fields theories for nonlinear composites is proposed and applied to recent homogenization methods. It relies on the analysis of a periodic composite for which an exact resolution of both the original nonlinear homogenization problem and the linear homogenization problems associated with the chosen linear comparison composite (LCC) with an identical microstructure is possible. The effects of the sole linearization scheme can then be evaluated without ambiguity. This methodology is applied to three different two-phase materials in which the constitutive behavior of at least one constituent is nonlinear elastic (or viscoplastic): a reinforced composite, a material in which both phases are nonlinear and a porous material. Comparisons performed on these three materials between the considered homogenization schemes and the reference solution bear out the relevance and the performances of the modified second-order procedure introduced by Ponte Castañeda in terms of prediction of the effective responses. However, under the assumption that the field statistics (first and second moments) are given by the local fields in the LCC, all the recent nonlinear homogenization procedures still fail to provide an accurate enough estimate of the strain statistics, especially for composites with high contrast.  相似文献   

19.
We consider a singular perturbation with unbounded energy. We propose here an effective method of finite element computation, fit for accounting for the linear behavior of the solution. The Hilbert space of the variational formulation, H20(0,1), is replaced by a simpler subspace containing an asymptotic solution of the initial problem. Error estimates are derived by eliminating some degrees of freedom and a numerical experiment is developped. To cite this article: F. Fontvieille et al., C. R. Mecanique 330 (2002) 507–512.  相似文献   

20.
By taking a hollow sphere as a representative volume element (RVE), the macroscopic strain potentials of porous materials with power-law incompressible matrix are studied in this paper. According to the principles of the minimum potential energy in nonlinear elasticity and the variational procedure, static admissible stress fields and kinematic admissible displacement fields are constructed, and hence the upper and the lower bounds of the macroscopic strain potential are obtained. The bounds given in the present paper differ so slightly that they both provide perfect approximations of the exact strain potential of the studied porous materials. It is also found that the upper bound proposed by previous authors is much higher than the present one, and the lower bounds given by Cocks is much lower. Moreover, the present calculation is also compared with the variational lower bound of Ponte Castañeda for statistically isotropic porous materials. Finally, the validity of the hollow spherical RVE for the studied nonlinear porous material is discussed by the difference between the present numerical results and the Cocks bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号