首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the last two decades, the problem of computing the elastic energy of phase transforming materials has been studied by a variety of research groups. Due to the non-quasiconvexity of the underlying multi-well landscape, different relaxation methods have been used in order to estimate the quasiconvex envelope of the energy density, for which no explicit expression is known at present.This paper combines a recently developed lamination bound for monocrystalline shape memory alloys which relies on martensitic twinned microstructures with the work of Smyshlyaev and Willis [1998a. A ‘non-local’ variational approach to the elastic energy minimization of martensitic polycrystals. Proc. R. Soc. London A 454, 1573–1613]. As a result, a lamination upper bound for n-variant polycrystalline martensitic materials is obtained.The lamination bound is then compared with Reuß- and Taylor-type estimates. While, for given volume fractions, good agreement of lamination upper and convexification lower bounds is obtained, a comparison using energy-minimizing volume fractions computed from the various bounds yields larger differences. Finally, we also investigate the influence of the polycrystal's texture. For a strong ellipsoidal texture, we observe even better agreement of upper and lower bounds than for the case of isotropic statistics.  相似文献   

2.
This paper presents a variational method for estimating the effective constitutive response of composite materials with nonlinear constitutive behavior. The method is based on a stationary variational principle for the macroscopic potential in terms of the corresponding potential of a linear comparison composite (LCC) whose properties are the trial fields in the variational principle. When used in combination with estimates for the LCC that are exact to second order in the heterogeneity contrast, the resulting estimates for the nonlinear composite are also guaranteed to be exact to second-order in the contrast. In addition, the new method allows full optimization with respect to the properties of the LCC, leading to estimates that are fully stationary and exhibit no duality gaps. As a result, the effective response and field statistics of the nonlinear composite can be estimated directly from the appropriately optimized linear comparison composite. By way of illustration, the method is applied to a porous, isotropic, power-law material, and the results are found to compare favorably with earlier bounds and estimates. However, the basic ideas of the method are expected to work for broad classes of composites materials, whose effective response can be given appropriate variational representations, including more general elasto-plastic and soft hyperelastic composites and polycrystals.  相似文献   

3.
A lower bound approach to the yield loci of porous materials   总被引:1,自引:0,他引:1  
A lower bound approach is proposed for the first time to solve the macroscopic yield loci of porous materials. The results are then compared with Gurson's upper bound yield loci and those of the experiments. It is shown that the present analysis is much more in accordance with the experimental results than the Gurson's.  相似文献   

4.
A new model is put forward to bound the effective elastic moduli of composites with ellipsoidal inclusions. In the present paper, transition layer for each ellipsoidal inclusion is introduced to make the trial displacement field for the upper bound and the trial stress field for the lower bound satisfy the continuous interface conditions which are absolutely necessary for the application of variational principles. According to the principles of minimum potential energy and minimum complementary energy, the upper and lower bounds on the effective elastic moduli of composites with ellipsoidal inclusions are rigorously derived. The effects of the distribution and geometric parameters of ellipsoidal inclusions on the bounds of the effective elastic moduli are analyzed in details. The present upper and lower bounds are still finite when the bulk and shear moduli of ellipsoidal inclusions tend to infinity and zero, respectively. It should be mentioned that the present method is simple and needs not calculate the complex integrals of multi-point correlation functions. Meanwhile, the present paper provides an entirely different way to bound the effective elastic moduli of composites with ellipsoidal inclusions, which can be developed to obtain a series of bounds by taking different trial displacement and stress fields.  相似文献   

5.
When the separation of scales in random media does not hold, the representative volume element (RVE) of classical continuum mechanics does not exist in the conventional sense, and various new approaches are needed. This subject is discussed here in the context of plasticity of random, microheterogeneous media. The first principal topic considered is that of hierarchies of mesoscale bounds, set up over a statistical volume element (SVE), for elastic–plastic-hardening microstructures; these bounds, with growing mesoscale, tend to converge to RVE responses. Following a formulation of the said hierarchies from variational principles and their illustration on two specific examples of power-law hardening materials, we turn to rigid-perfectly-plastic materials. The latter are illustrated by simulations in the setting of a planar random chessboard. The second principal topic is the analysis of spatially non-uniform response patterns of randomly heterogeneous plastic materials. We focus here on the geodesic properties of shear-band patterns, and then on the correlation of strain fields to the underlying microstructures. In the case of perfectly-plastic materials, shear-bands become slip-lines, but their spatial disorder is still present, and is described in ensemble sense by wedges of randomly scattered characteristics.  相似文献   

6.
The present two-part study aims at investigating the specific effects of Mohr–Coulomb matrix on the strength of ductile porous materials by using a kinematic limit analysis approach. While in the Part II, static and kinematic bounds are numerically derived and used for validation purpose, the present Part I focuses on the theoretical formulation of a macroscopic strength criterion for porous Mohr–Coulomb materials. To this end, we consider a hollow sphere model with a rigid perfectly plastic Mohr–Coulomb matrix, subjected to axisymmetric uniform strain rate boundary conditions. Taking advantage of an appropriate family of three-parameter trial velocity fields accounting for the specific plastic deformation mechanisms of the Mohr–Coulomb matrix, we then provide a solution of the constrained minimization problem required for the determination of the macroscopic dissipation function. The macroscopic strength criterion is then obtained by means of the Lagrangian method combined with Karush–Kuhn–Tucker conditions. After a careful analysis and discussion of the plastic admissibility condition associated to the Mohr–Coulomb criterion, the above procedure leads to a parametric closed-form expression of the macroscopic strength criterion. The latter explicitly shows a dependence on the three stress invariants. In the special case of a friction angle equal to zero, the established criterion reduced to recently available results for porous Tresca materials. Finally, both effects of matrix friction angle and porosity are briefly illustrated and, for completeness, the macroscopic plastic flow rule and the voids evolution law are fully furnished.  相似文献   

7.
In Gurson's footsteps, different authors have proposed macroscopic plastic models for porous solid with pressure-sensitive dilatant matrix obeying the normality law (associated materials). The main objective of the present paper is to extend this class of models to porous materials in the context of non-associated plasticity. This is the case of Drucker–Prager matrix for which the dilatancy angle is different from the friction one, and classical limit analysis theory cannot be applied. For such materials, the second last author has proposed a relevant modeling approach based on the concept of bipotential, a function of both dual variables, the plastic strain rate and stress tensors. On this ground, after recalling the basic elements of the Drucker–Prager model, we present the corresponding variational principles and the extended limit analysis theorems. Then, we formulate a new variational approach for the homogenization of porous materials with a non-associated matrix. This is implemented by considering the hollow sphere model with a non-associated Drucker–Prager matrix. The proposed procedure delivers a closed-form expression of the macroscopic bifunctional from which the criterion and a non-associated flow rule are readily obtained for the porous material. It is shown that these general results recover several available models as particular cases. Finally, the established results are assessed and validated by comparing their predictions to those obtained from finite element computations carried out on a cell representing the considered class of materials.  相似文献   

8.
The constitutive behavior of porous materials (including the yield loci, the void growth rate, the macro stress-strain relation and the strain to localization instability) is examined based on the lower bound approach proposed by the present authors. These results are then compared with the experimental and the finite element results as well as those predicted by Gurson's equations. Emphasis is placed on approaching the real behavior from the upper and the lower bound analysis. Calculation is also made on the influence of void nucleation on the critical strain to instability and a modified strain-controlled nucleation criterion is proposed. Finally the instability and fracture of AISI4340 steel in plane strain tension is examined and comparison is made between theoretical and experimental results.  相似文献   

9.
Extended bounding theorems of limit analysis   总被引:1,自引:0,他引:1  
This paper studies the bounding problems of the complete solu-tion of limit analysis for a rigid-perfectly plastic medium,allowing for the discontinuity of plastic flow.A generalizedvariational principle involving conditions of the rigid-plas-tic interface and the discontinuous surface of a velocityfield has been advanced for the mixed-boundary value problem.Based on this principle,a set of variational formulae of li-mit analysis is established.The safety factors obtained bythese formulae lie between the upper and lower bounds obtainedby the classical bounding theorems with the same kinematicallyand statically admissible field.Moreover,extended bounding theorems have been derivedand proved,which hold a broader stress and velocity field thanthe statically and kinematically admissible field.The corol-laries of these theorems indicate the relationship between thevariational solution and the complete solution of limit analy-sis.Applications of these theorems show that a close approxi-mation can be obtained  相似文献   

10.
This paper presents a theoretical study of the speeds of plastic waves in rate-independent elastic–plastic materials with anisotropic elasticity. It is shown that for a given propagation direction the plastic wave speeds are equal to or lower than the corresponding elastic speeds, and a simple expression is provided for the bound on the difference between the elastic and the plastic wave speeds. The bound is given as a function of the plastic modulus and the magnitude of a vector defined by the current stress state and the propagation direction. For elastic–plastic materials with cubic symmetry and with tetragonal symmetry, the upper and lower bounds on the plastic wave speeds are obtained without numerically solving an eigenvalue problem. Numerical examples of materials with cubic symmetry (copper) and with tetragonal symmetry (tin) are presented as a validation of the proposed bounds. The lower bound proposed here on the minimum plastic wave speed may also be used as an efficient alternative to the bifurcation analysis at early stages of plastic deformation for the determination of the loss of ellipticity.  相似文献   

11.
A remarkably simple analytical expression for the sensitivity of the two-dimensional macroscopic elasticity tensor to topological microstructural changes of the underlying material is proposed. The derivation of the proposed formula relies on the concept of topological derivative, applied within a variational multi-scale constitutive framework where the macroscopic strain and stress at each point of the macroscopic continuum are volume averages of their microscopic counterparts over a representative volume element (RVE) of material associated with that point. The derived sensitivity—a symmetric fourth order tensor field over the RVE domain—measures how the estimated two-dimensional macroscopic elasticity tensor changes when a small circular hole is introduced at the microscale level. This information has potential use in the design and optimisation of microstructures.  相似文献   

12.
Predictions are made for the size effect on strength of a random, isotropic two-phase composite. Each phase is treated as an isotropic, elastic-plastic solid, with a response described by a modified deformation theory version of the Fleck-Hutchinson strain gradient plasticity formulation (Fleck and Hutchinson, J. Mech. Phys. Solids 49 (2001) 2245). The essential feature of the new theory is that the plastic strain tensor is treated as a primary unknown on the same footing as the displacement. Minimum principles for the energy and for the complementary energy are stated for a composite, and these lead directly to elementary bounds analogous to those of Reuss and Voigt. For the case of a linear hardening solid, Hashin-Shtrikman bounds and self-consistent estimates are derived. A non-linear variational principle is constructed by generalising that of Ponte Castañeda (J. Mech. Phys. Solids 40 (1992) 1757). The minimum principle is used to derive an upper bound, a lower estimate and a self-consistent estimate for the overall plastic response of a statistically homogeneous and isotropic strain gradient composite. Sample numerical calculations are performed to explore the dependence of the macroscopic uniaxial response upon the size scale of the microstructure, and upon the relative volume fraction of the two phases.  相似文献   

13.
This paper details a procedure to determine lower bounds on the size of representative volume elements (RVEs) by which the size of the RVE can be quantified objectively for random heterogeneous materials. Here, attention is focused on granular materials with various distributions of inclusion size and volume fraction of inclusions. An extensive analysis of the RVE size dependence on the various parameters is performed. Both deterministic and stochastic parameters are analysed. Also, the effects of loading mode and the parameter of interest are studied. As the RVE size is a function of the material, some material properties such as Young's modulus and Poisson's ratio are analysed as factors that influence the RVE size. The lower bound of RVE size is found as a function of the stochastically distributed volume fraction of inclusions; thus the stochastic stability of the obtained results is assessed. To this end a newly defined concept of stochastic stability (DH-stability) is introduced by which stochastic effects can be included in the stability considerations. DH-stability can be seen as an extension of classical Lyapunov stability. As is shown, DH-stability provides an objective tool to establish the lower bound nature of RVEs for fluctuations in stochastic parameters.  相似文献   

14.
15.
This paper addresses the estimation of the effective free energy of polycrystalline shape memory alloys, in the framework of nonlinear elasticity and infinitesimal strains. The translation method is combined with a Hashin-Shtrikman type variational formulation to provide rigorous lower bounds on the effective free energy. Those bounds incorporate both intra-grain compatibility conditions (resulting in a non-convex bound) and inter-grain constraints (by taking one- and two-point statistics into account). Some examples are given to compare the results obtained with other bounds from the literature.  相似文献   

16.
The load-bearing capacities of ductile composite materials and structures are studied by means of a combined micro/macromechanics approach. Firstly, on the microscopic scale, the aim is to get the macroscopic strength domains by means of the homogenization theory of micromechanics. A representative volume element (RVE) is selected to reflect the microstructures of the composite materials. By introducing the homogenization theory into the kinematic limit theorem of plastic limit analysis, an optimization format to directly calculate the limit loads of the RVE is obtained. And the macroscopic yield criterion can be determined according to the relation between macroscopic and microscopic fields. Secondly, on the macroscopic scale, by introducing the Hill's yield criterion into the kinematic limit theorem, the limit loads of orthotropic structures such as unidirectional fiber-reinforced composite structures are worked out. The finite element modeling of the kinematic limit analysis is deduced into a nonlinear mathematical programming with equality-constraint conditions that can be solved by means of a direct iterative algorithm. Finally, some examples are illustrated to show the application of the present approach. Project supported by the National Natural Science Foundation of China (No. 19902007), the National Foundation for Excellent Doctoral Dissertation of China (No. 200025), the Fund of the Ministry of Education of China for Returned Oversea Scholars and the Basic Research Foundation of Tsinghua University.  相似文献   

17.
A variational formulation employing the minimum potential and complementary energy principles is used to derive a micromechanics-based nonlocal constitutive equation for random linear elastic composite materials, relating ensemble averages of stress and strain in the most general situation when mean fields vary spatially. All information contained in the energy principles is retained; we employ stress polarization trial fields utilizing one-point statistics so that the resulting nonlocal constitutive equation incorporates up through three-point statistics. The variational structure is developed first for arbitrary heterogeneous linear elastic materials, then for randomly inhomogeneous materials, then for general n-phase composite materials, and finally for two-phase composite materials, in which case explicit variational upper and lower bounds on the nonlocal effective modulus tensor operator are derived. For statistically uniform infinite-body composites, these bounds are determined even more explicitly in Fourier transform space. We evaluate these in detail in an example case: longitudinal shear of an aligned fiber or void composite. We determine the full permissible ranges of the terms involving two- and three-point statistics in these bounds, and thereby exhibit explicit results that encompass arbitrary isotropic in-plane phase distributions; we also develop a nonlocal “Milton parameter”, the variation of whose eigenvalues throughout the interval [0, 1] describes the full permissible range of the three-point term. Example plots of the new bounds show them to provide substantial improvement over the (two-point) Hashin–Shtrikman bounds on the nonlocal operator tensor, for all permissible values of the two- and three-point parameters. We next discuss further applications of the general nonlocal operator bounds: to any three-dimensional scalar transport problem e.g. conductivity, for which explicit results are given encompassing the full permissible ranges of the two- and three-point statistics terms for arbitrary three-dimensional isotropic phase distributions; and to general three-dimensional composites, where explicit results require future research. Finally, we show how the work just summarized, treating elastostatics, can be generalized to elastodynamics, first in general, then explicitly for the longitudinal shear example.  相似文献   

18.
王增会  李锡夔 《力学学报》2018,50(2):284-296
本文在二阶计算均匀化框架下提出了颗粒材料损伤--愈合与塑性的多尺度表征方法. 颗粒材料结构在宏观尺度模型化为梯度Cosserat连续体,在其有限元网格的每个积分点处定义具有离散颗粒介观结构的表征元. 建立了表征元离散颗粒系统的非线性增量本构关系. 表征元周边介质作用于表征元边界颗粒的增量力与增量力偶矩以表征元边界颗粒的增量线位移与增量转动角位移、当前变形状态下表征元离散介观结构弹性刚度、以及凝聚到表征元边界颗粒的增量耗散摩擦力表示. 基于平均场理论与Hill定理,导出了基于介观力学信息的梯度Cosserat连续体增量非线性本构关系. 在等温热动力学框架下定义了表征颗粒材料各向异性损伤--愈合和塑性的损伤、愈合张量因子与综合损伤、愈合效应的净损伤张量因子和塑性应变. 此外,定义了损伤和塑性耗散能密度与愈合能密度,以定量比较材料损伤、愈合、塑性对材料失效的效应. 应变局部化数值例题结果显示了所建议的颗粒材料损伤--愈合--塑性表征方法的有效性.   相似文献   

19.
In this work we present a thermomechanical multiscale constitutive model for materials with microstructure. In these materials thermal effects at microscale have an impact on the effective macroscopic stress. As a result, it turns out that the homogenized stress depends upon the macroscopic temperature and its gradient. In order to allow this interplay to be thermodynamically valid, we resort to a macroscopic extended thermodynamics whose elements are derived from the microscopic behavior using homogenization concepts. Hence, the thermodynamics implications of this new class of multiscale models are discussed. A variational approach based on the Hill–Mandel Principle of Macro-homogeneity, and which makes use of the volume averaging concept over a local representative volume element (RVE), is employed to derive the thermal and mechanical equilibrium problems at the RVE level and the corresponding homogenization expressions for the effective heat flux and stress. The material behavior at the RVE level is described through standard phenomenological constitutive models. To sum up, the novel contribution of the model presented here is that it allows to include the microscopic temperature fluctuation field, obtained from the multiscale thermal analysis, in the micro-mechanical problem at the RVE level while keeping thermodynamic consistency.  相似文献   

20.
A new micromechanics model based on the second-order moment of stress is established to investigate the effect of gas pressure on the nonlinear macroscopic constitutive relationship of the porous materials. The analytical method agrees well with numerical simulation based on the finite element method. Through a systematic study, we find that the gas pressure has a prominent effect on the nonlinear deformation behavior of the porous materials. The gas pressure can cause tension–compression asymmetry on the uniaxial stress–strain curve and the nominal Poisson’s ratio. The pore pressure significantly reduces the initial yield strength and failure strength of the porous metals, especially when the relative density of the material is small. The gas phase also strongly compromises the composite strength when the temperature is increased. The model may be useful for the evaluation of mechanical integrity of porous materials under various working conditions and working temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号