首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dimerization kinetics was studied for fullerene C60 by IR spectroscopy at a pressure of 1.5 GPa in the temperature range 373–473 K. The kinetic curves for the formation of a dimer (C60)2 were obtained using its analytical IR band at 796 cm?1. Under the assumption that pressure-induced C60 dimerization is a second-order irreversible reaction, the reaction rate constants were determined at different temperatures. The corresponding activation energy and preexponential factor were found to be 134±6 kJ/mol and (1.74± 0.24)×1014 s?1, respectively. The specific features of the solid-phase C60 dimerization in simple cubic and face-centered cubic fullerite phases are discussed.  相似文献   

2.
The kinetics of fullerene solid-phase dimerization proceeding through the 2+2 cycloaddition of C60 at a pressure of 1.5 GPa is investigated by vibrational spectroscopy in the temperature range 373–473 K. Kinetic curves for the formation of (C60)2 dimers are obtained using the analytical band at 796 cm?1 in the IR spectra of the (C60)2 dimer molecule. Under the assumption that the pressure-induced dimerization of C60 is an irreversible second-order reaction, the reaction rate constants are determined at different temperatures. The activation energy and the preexponential factor are found to be equal to 134±6 kJ/mol and (1.74±0.24)×1014 s?1, respectively.  相似文献   

3.
Modifications of carbon which are formed from C60 fullerite at pressures up to 10.0 GPa and temperatures up to 1900 K are studied by x-ray diffraction, Raman spectroscopy, and atomic force microscopy methods. The pressures p and temperatures T at which atomic, molecular, and polymolecular structures form under conditions of quasihydrostatic compression are determined. It is shown that, together with polymerization, another type of chemical interaction of the molecules, called polycondensation, which leads to the formation of polymolecular structures with a shortest intermolecular distance of 0.65 nm, is possible in the system. Three-dimensional polycondensation of C60 fullerene is explained by the special properties of the new carbon states. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 10, 778–783 (25 May 1996) The spelling of the authors names are presented here in English as requested by the Russian Editorial office.  相似文献   

4.

The stability under pressure of the charge-density-wave in the insulating phase of YNiO3 was studied by infrared spectroscopy and synchrotron diffraction techniques up to 23 GPa. YNiO3 undergoes a pressure induced insulator-to-metal transition at approximately 15 GPa in the pressure domain, coinciding with the melting of the charge ordered phase. The optical band gap is non-zero above 15 GPa, as is the case above the reported insulator-metal transition (585 K) in the temperature-domain. There is a similarity between the infrared spectral profile around 15 GPa and the infrared spectral profile above ca. 700 K. We conclude therefore that the pressure-induced structural/electronic transition induced around 15 GPa, probably having an as-yet unreported counterpart in the temperature domain at a temperature in excess of 585 K.  相似文献   

5.
A study of electrophysical and thermodynamic properties of C60 single crystals under step shock loading has been carried out. The increase and the following reduction in specific electroconductivity of C60 fullerite single crystals at step shock compression up to pressure 30 GPa have been measured. The equations of state for face centred cubic (fcc) C60 fullerite as well as for two-dimensional polymer C60 and for three-dimensional polymer C60 (3D-C60) were constructed. The pressure–temperature states of C60 fullerite were calculated at step shock compression up to pressure 30 GPa and temperature 550 K. The X-ray diffraction studies of shock-recovered samples reveal a mixture of fcc C60 and a X-ray amorphous component of fullerite C60. The start of the formation of the X-ray amorphous component occurs at a pressure P m≈ 19.8 GPa and a temperature T m≈ 520 K. At pressures exceeding P m and temperatures exceeding T m, the shock compressed fullerite consist of a two-phase mixture of fcc C60 fullerite and an X-ray amorphous component presumably consisting of the nucleators of polymer 3D-C60 fullerite. The decrease in electroconductivity of fullerite can be explained by the percolation effect caused by the change of pressure, size and number of polymeric phase nuclei.  相似文献   

6.
The luminescence spectra of C60 single crystals are studied at T≅10 K and pressure up to 4.0 GPa. It is observed that as the pressure increases, one fine-structure band in the spectrum intensifies sharply and dominates at pressures P≥1.7 GPa. The pressure shift of this band is much larger than the shift of other bands in the spectrum, and its magnitude correlates with the pressure dependence of the band gap. It is shown that this band could be due to radiative recombination of free Frenkel excitons. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 3, 234–238 (10 August 1998)  相似文献   

7.
The results of an investigation of the transformation of C60 fullerite to diamond under pressure through intermediate three-dimensionally polymerized and amorphous phases are reported. It is found that treatment of fullerite C60 at pressures 12–14 GPa and temperatures ∼1400°C produces a nanocrystalline graphite-diamond composite with a concentration of the diamond component exceeding 50%. At lower temperatures (700–1200°C) nanocomposites consisting of diamondlike (sp 3) and graphitic (sp 2) amorphous phases are formed. The nanocomposites obtained have extremely high mechanical characteristics: hardness comparable to that of best diamond single crystals and fracture resistance two times greater than that of diamond. Mechanisms leading to the transformation of C60 fullerite into diamond-based nanocomposites and the reasons for the high mechanical characteristics of these nanocomposites are discussed. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 11, 822–827 (10 June 1999)  相似文献   

8.
The physical and mechanical properties of a C60 fullerene sample have been investigated under high pressure–high temperature conditions using a designer Diamond Anvil Cell. Electrical resistance measurements show evidence of C60 cage collapse at 20 GPa, which leads to the formation of an insulating phase at higher pressure. Energy dispersive X-ray diffraction (EDXD) data indicated that the characteristic fcc reflections gradually decrease in intensity and eventually disappear above 28 GPa. A C60 sample was laser-heated at a pressure of 35 GPa to a temperature of 1910±100 K and, subsequently, decompressed to ambient conditions. The photoluminescence spectra and the Raman spectrum of the pressure–temperature-treated sample were measured at a low temperature of 80 K. Raman peak at 1322.3 cm?1 with full-width half-maximum of 2.9 cm?1 was observed from the sample, which is attributed to the hexagonal diamond phase in the sample. The room temperature photoluminescence spectra showed a symmetric emission band centered in the red spectral range with a peak at 690 nm. The structural analysis of the pressure–temperature-processed C60 sample using EDXD method showed strong internal structure orientation and a phase close to hexagonal diamond. Mechanical properties such as hardness and Young’s modulus were measured by nanoindentation technique and the values were found to be 90±7 and 1215±50 GPa, respectively and these values are characteristic of sp3-bonded carbon materials.  相似文献   

9.
Abstract

The phase diagram of RDX-h6 (hexahydro-1,3,5-trinito-s-triazine) and RDX-d6 has been studied by Raman spectroscopy to more than 13 GPa at 295 K and 7.5 GPa between 150 and 450 K. Two stable high pressure phases have been found. γ-RDX or RDX-III forms from α-RDX above 3.8 GPa below 380 K. β-RDX forms when α- or γ-RDX are heated, can be retained metastably at low temperatues, and may be related to a very unstable form occasionally recovered at ambient pressure. Deuterium isotopic substitution and shear increase the temperature where β-RDX begins to form on heating.  相似文献   

10.
Single crystalline C60 nanotubes having face‐centered‐cubic structure with diameters in the nanometer range were synthesized by a solution method. In situ Raman and photoluminescence spectroscopy under high pressure were employed to study the structural stabilities and transitions of the pristine C60 nanotubes. A phase transition, probably because of the orientational ordering of C60 molecules, from face‐centered‐cubic structure to simple cubic structure occurred at the pressure between 1.46 and 2.26 GPa. At above 20.41 GPa, the Raman spectrum became very diffuse and lost its fine structure in all wavenumber regions, and only two broad and asymmetry peaks initially centered at 1469 and 1570 cm–1 were observed, indicating an occurrence of amorphization. This amorphous phase remained to be reversible until 31.1 GPa, and it became irreversible to the ambient pressure after the pressure cycle of 34.3 GPa was applied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Measurements have been made of the Raman, optical absorption, and luminescence spectra of single crystals and pellets of the fullerite C70 at T=300 K and at pressures up to 12 GPa. The baric shift /dP and the Grüneisen parameters of the Raman-active intramolecular phonon modes have been determined. It has been established that the d ω/dP value for certain phonon modes abruptly changes at pressures of P 1≈2 GPa and P 2≈5.5 GPa, as do the half-widths of the Raman lines. These features in the Raman spectrum are associated with phase transitions at high pressure. The baric shifts of the absorption and luminescence edges of C70 crystals have been determined and are −0.12 eV/GPa and −0.11 eV/GPa, respectively, for absorption and luminescence. The baric shift of the absorption edge decreases significantly with increasing pressure and is −0.03 eV/GPa at 10 GPa. These data have been used to determine the deformation potential of the fullerite C70, which is about 2.1±0.1 eV. Zh. éksp. Teor. Fiz. 111, 262–273 (January 1997)  相似文献   

12.
The process of phototransformation in C60 was analysed by means of Raman spectroscopy for single crystals irradiated at various temperatures between 80 K and 450 K. The activation window for the transformation process was found to be between the temperature of the first order phase transition of 260 K and an upper temperature of about 400 K. Detailed features of the resulting spectra were found to depend on the transformation temperature. From a comparison with ab initio calculations of Porezag et al. the material irradiated at high temperatures could be assigned to a C60 dimer whereas the material phototransformed at room temperature could not be identified with a simple cluster.  相似文献   

13.
This paper discusses the results of calorimetric studies of the 1D C60 (orthorhombic) and 2D C60 (tetragonal and rhombohedral) fullerites, as well as of the graphite-like polyfullerite, which are produced from a starting C60 fullerite subjected to a pressure of 1–8 GPa at temperatures ranging from 300 to 1270 K. The analysis is made primarily of the C p 0 heat capacity measurements performed in adiabatic calorimeters in the 5-to 350-K range.  相似文献   

14.
Optical absorption spectra of thin fullerene (C60) crystals in the range 1.7 to 3.8 eV have been measured at T=300 K and at pressures up to 2.5 GPa. The spectrum shifts toward the red with pressure, and the electron absorption intensity is redistributed among its bands. The intensity of the band associated with the lowest direct electron interband transition monotonically increases with pressure, whereas the intensity of the upper interband feature decreases. Bands related to weak edge absorption in the range between 1.7 and 2.2 eV gradually merge with the band associated with the lowest interband transition, whose intensity rises with pressure. A similar redistribution of intensity among electron transition bands has been observed when comparing the spectrum of an isolated C60 molecule and that of a C60 crystal. The results indicate that the crystal-field induced mixing of electron states is present in solid C60, and they can be discussed in terms of the Craig-McClure model, which was suggested to describe crystal-field induced mixing of electron states in anthracene and naphthalene molecular crystals. Zh. éksp. Teor. Fiz. 113, 313–322 (January 1998)  相似文献   

15.

Magnetisation and magnetic susceptibility of a Lu2Fe17 single crystal have been studied under hydrostatic pressure up to 1.2 GPa at temperatures down to 5 K using a SQUID magnetometer. The ferromagnetic phase of Lu2Fe17 is suppressed rapidly above a critical pressure P C = 0.4 GPa in the whole temperature range below the critical temperature T C . A magnetic phase diagram of Lu2Fe17 has been constructed using results of the magnetic susceptibility measurements under pressure. A pressure induced incommensurate antiferromagnetic phase exhibits metamagnetic transitions with the increasing critical magnetic field H C under pressure. Taking into account recent neutron diffraction data, the pressure induced anisotropic changes of the lattice parameters of the Lu2Fe17 are discussed.  相似文献   

16.
The crystal and magnetic structures of manganite Pr0.7Ba0.3MnO3 have been studied at high pressures of up to 5.1 GPa and temperatures from 10 to 300 K by means of the neutron diffraction. At normal pressure and a temperature T C = 200 K, a ferromagnetic state forms in Pr0.7Ba0.3MnO3. At high pressures P ≥ 1.9 GPa and T < T N ≈ 153 K, a new antiferromagnetic state of A-type have been observed. Under high pressure, the Curie temperature T C increases with the characteristic quantity dT C/dP ≈ 2.4 K/GPa. A possible reason for the appearance of an A-type antiferromagnetic phase in Pr0.7Ba0.3MnO3 at high pressures may be anisotropic uniaxial compression of oxygen octahedra along the b axis of the orthorhombic structure.  相似文献   

17.
Abstract

The phase transition of orthorhombic sulphur α-S8 to a high pressure amorphous sulphur allotrope (a-S) has been investigated by Raman spectroscopy. The conversion is found to be induced by the absorption of laser light and can be discussed in terms of ring opening followed by cis-trans conversion of the dihedral angle of S8 molecules. Laser energy and transition pressure are correlated due to the pressure tuned red shift of the absorption edge of α-S8. The amorphous (a-S) phase is observed up to 15 GPa at laser intensities below 30μW/μm2 at 514.5 and 488.0 nm. Above this threshold power a-S transforms into a second photo-induced phase (p-S), whose discrete Raman spectrum implies an ordered molecular and crystalline structure. By further increasing pressure crystalline S6 can be created which is found to be the dominant molecular species at pressures above 10 GPa and low temperatures. A phase diagram in the range T < 300 K and p < 15 GPa is also presented.  相似文献   

18.
ABSTRACT

We studied the effect of pressure and temperature on the hydrocarbon (HC) chain length distribution and total amount of HCs in the reaction of direct graphite hydrogenation at pressures of 0.1–7.8?GPa and temperatures of 1000–1350°C. An increase in pressure was found to lead both to an increase in the absolute yield of HCs due to direct graphite hydrogenation and to chain elongation of HC products. Light alkanes predominate among HCs in the entire studied range of P–T parameters. However, their concentration in quenched fluids increases as pressure is elevated, from less than 10?rel.% at 0.1?GPa to more than 40–50?rel.% at P?≥?3.8?GPa. Methane is actually the only light alkane among reaction products at 0.1?GPa and 1000°C, while it is a minor component at 7.8?GPa and 1350°C. The most stable alkane at pressures above 3.8?GPa is ethane (C2H6).  相似文献   

19.
The crystal and magnetic structure and the Raman spectra in Pr0.7Ba0.3MnO3 manganite have been studied by the neutron diffraction technique at pressures up to 5 GPa as well as by the X-ray diffraction and Raman spectroscopy at pressures up to 30 GPa. The pressure dependence is determined for the lattice parameters, unit cell volume, Mn-O bond lengths in the orthorhombic structure of the Imma symmetry, and bending and stretching vibration modes for oxygen octahedra. In the low-temperature range at pressure P = 1.9 GPa, the magnetic transition from the initial ferromagnetic (FM) ground state (T C = 197 K) to the A-type antiferromagnetic (AFM) state (T N = 153 K) has been revealed. The FM and AFM phases coexist at pressures up to 5.1 GPa and exhibit negative and positive values of the pressure coefficient for the Curie and Néel temperature, respectively (dT C/dP = −2.3 K/GPa and dT N/dP = 8 K/GPa). The pressure dependence of the Curie temperature in Pr0.7Ba0.3MnO3 differs drastically from that observed in other manganites of nearly the same composition with the orthorhombic Pnma and rhombohedral R[`3]cR\bar 3c structures, where the FM phase is characterized by the positive values of dT C/dP. The structural mechanisms of these phenomena are discussed.  相似文献   

20.
《Solid State Communications》2002,121(6-7):391-393
The ultraviolet (257 nm) Raman spectrum of C60 compressed to 30 GPa in a Mao–Bell diamond anvil cell with no pressure transmitting medium at ambient temperature indicates the formation of diamond after release of pressure. Previously, more extreme non-hydrostatic compression was reported to be required to form diamond from C60. These results provide confirmation of the transformation of C60 to diamond upon non-hydrostatic compression at room temperature and illustrate the utility of UV Raman spectroscopy for the analysis of carbon phases containing both sp2 and sp3 bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号