首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An automated on-line pre-reduction of arsenate, monomethylarsonate (MMA) and dimethylarsinate (DMA) using flow injection hydride generation atomic absorption spectrometry (FI-HGAAS) is feasible. The kinetics of pre-reduction and complexation depend strongly on the concentration of -cysteine and on the temperature in the following increasing order: inorganic As(V)<DMA<MMA. Arsenate is pre-reduced/complexed within less than 50 s at 70–100°C compared to 1 h at room temperature, while MMA and DMA require 1.5–2 min at 70–100°C and up to 1–2 h at room temperature. The characteristic masses and concentrations for 100 μl injections are 0.01 ng and 0.1 μg l−1 in integrated absorbance and 0.2 ng and 2 μg l−1 in peak height measurements, and the limits of detection are ca. 0.5 ng and 5 μg l−1, respectively. In a high-performance liquid chromatography (HPLC)–HGAAS system, the -cysteine complexes of inorganic As(III), MMA and DMA are best separated within 7 min by HPLC on a strongly acidic cation exchange column such as Spherisorb S SCX 120×4 mm (5 μm) with a mobile phase containing 12 mmol l−1 phosphate buffer (KH2PO4/H3PO4)–2.5 mmol l−1 -cysteine, pH 3.3–3.5. Upon dilution to -cysteine levels below 10 mmol l−1, which are compatible with HPLC separations, the DMA–cysteine complex is unstable on storage. No baseline separations are possible with anion exchange and reverse phase C18 HPLC columns. The limits of detection with 50 μl injections in peak area mode are ca. 0.5 ng and 10 μg l−1, respectively.  相似文献   

2.
A study was undertaken to evaluate the distribution of Al, As, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn in fly ashes collected in the electrostatic precipitator of a thermal power plant in San Nicolás (Argentina). Five samples were collected during one week of operation. For the fractionation, the scheme applied consisted in extracting the elements in four fractions namely (i) soluble and exchangeable elements; (ii) carbonates, oxides and reducible elements; (iii) bound to sulfidic metals; and (iv) residual elements. Metals and metalloids at μg g− 1 level were determined in each fraction by inductively coupled plasma optical emission spectrometry (ICP OES). For validation, a standard reference material (SRM 1633 coal fly ash) from NIST was subjected to the same chemical sequential extraction procedure that the samples. X-ray diffraction powder (XRD) analysis and scanning electron microscopy (SEM) were used to characterize the major minerals present in the matrix. Total analyte concentration (in μg g− 1) varied from 10.6 for Pb to 17,622 for Al. Minimum and maximum concentrations (in μg g− 1) found in individual samples in the four fractions were: Al, 92.7–9668; As, < 0.3–143; Cr, 2.0–10.4; Cu, < 0.2–35.6; Fe, < 0.3–4992; Mn, < 0.1–128; Ni, < 0.3–139; Pb, < 0.5–9.1; Ti, < 0.3–2243; V, 17.0–112.9; and Zn, < 0.1–68.2. The leachability of the 11 elements under study proved to be different. Low percentages of Al (1%), V (7%) and Cr (8%) were detected in the most bioavailable fraction. Arsenic was found to be most abundant in the non-silicate phase, represented by the second and third fractions, while Cr, Fe, Ni, Pb and Zn were mostly associated to the residual fraction.  相似文献   

3.
Instrumental neutron activation analysis of biological and environmental samples suffers from interferences caused by high salt concentrations. Poly-5-vinyl-8-hydroxy-quinoline coated on controlled pore diameter glass beads is suggested as a chelating column for the rapid removal of aluminum, vanadium, copper and manganese from neutron-activated sea-water samples. Separation from bulk elements is satisfactory at flow rates of 20 ml min−1. With addition of carriers and with chemical yield determinations, relative standard deviations of 2–10% can be achieved for spike concentrations of 0.1 μg Mn ml−1, 0.3 μg V ml−1, 20 μg Al ml−1 and 1.0 μg Cu ml−1.  相似文献   

4.
Zinc, cadmium, and lead react quantitatively in the pH ranges of 3.9–9.2, 3.5–11.2, and 5.5–10.5, respectively, to form water insoluble and thermally stable complexes which are easily extracted into molten naphthalene. The solid naphthalene containing the colorless complex is dissolved in chloroform and then replaced by copper to develop a yellow color in the chloroform layer. The absorbance in each case is measured at 435 nm against reagent blank. Beer's law holds over the concentration ranges of 3.5–95.0, 3.0–105.0, and 8.5–125. 0 μg for zinc, cadmium, and lead, respectively, into 10 ml of the chloroform solution. The molar absorptivities are calculated to be Zn, 1.048 × 104 liters mol−1 cm−1; Cd, 1.054 × 104 liters mol−1 cm−1, and Pb, 1.014 × 104 liters mol−1 cm−1 with sensitivities in terms of Sandell's definition of 0.0062 μg Zn/cm2, 0.010 μg Cd/cm2, and 0.020 μg Pb/cm2, respectively. Ten replicate determinations of sample solutions containing 30 μg of zinc, 18.7 μg of cadmium, and 42.5 μg of lead give mean absorbances 0.480, 0.175, and 0.208 with standard deviations of 0.0017, 0.0013, and 0.0015 or relative standard deviations of 0.35, 0.74, and 0.72%, respectively. The interference of various ions has been studied and the method has been applied to the determination of cadmium in various synthetic mixtures and zinc and lead in some standard reference materials.  相似文献   

5.
A method to determine iodide in infant formula samples by indirect atomic absorption spectrometry (IAAS) was developed. The iodide in solution resulting from an alkaline digestion (Na2CO3–NaOH) of the sample is precipitated with silver; the precipitate is redissolved by adding cyanide solution, and this solution is subjected to GF-AAS. Temperatures of 1000 and 2100°C were selected for the ashing and atomization steps, respectively, using a mixture of Pd and Mg(NO3)2 as a matrix modifier (at concentrations of 36 and 16 μg ml−1, respectively). The sensitivity, LOD, LOQ and characteristic mass obtained were, respectively, 1.12×10−2 l μg−1, 3.1 μg g−1 and 10.4 μg g−1 and 7.3 pg, referred to sample. The linear interval of concentrations extends up to 10 μg l−1 of iodide, with no need to use the standard addition method; the mean R.S.D. of data within this range is 3.4%, with 2.9% over the whole procedure. No interfering effects were observed among the foreign ions studied, and 100.0% was the mean analytical recovery achieved within the linear range of concentrations. The application of the method to seven real samples gave a mean content of 12.8 μg g−1 of iodide, as well as less than 3.1 μg g−1 in eight other samples.  相似文献   

6.
A sensitive spectrophotometric method for the determination of trace amounts of acetylacetone in aqueous solution is carried out. In the presence of bicarbonate solution, diazotized anthranilic acid reagent reacts rapidly with acetylacetone to form a yellow-colored compound with maximum absorption at 330 nm, which is water-soluble and reasonably stable. Adherence to Beer's law is observed in the range 20–200 μg of acetylacetone/25 ml, with a molar absorptivity of 19.5 × 103 liters mol−1 cm−1, a sensitivity index of 0.0051 μg cm−2, relative to + 0.3 to −0.9%, and a relative standard deviation of 0.5–1.4%, depending on the concentration level.  相似文献   

7.
A column method has been established for the preconcentration of aluminum and copper(II) with Alizarin Red S and a cetyltrimethylammonium-perchlorate ion pair supported on naphthalene, using a simple glass-tipped tube. Aluminum and copper(II) react with Alizarin Red S to form water-soluble colored chelate anions. These chelate anions form water-insoluble ternary complexes with the adsorbent on the inactive surface of naphthalene packed into a column. They are quantitatively retained in the pH ranges of 4.7-5.2 for aluminum and 5.0-10.0 for copper. The solid mass is dissolved out from the column with 5 ml of dimethylformamide (DMF) for aluminum and 5 ml of ethanol for copper and the absorbance was measured with a spectrometer at 525 nm for aluminum and at 529 nm for copper. The calibration curves were linear over the concentration ranges of 0.25-5.0 μg of aluminum in 5 ml of DMF solution and 0.50-12.0 μg of copper in 5 ml of ethanol solution. The molar absorptivities and Sandell′s sensitivities were respectively calculated to be 2.8 × 104 liter · mol−1 · cm−1 and 9.62 × 10−4 μg · cm−2 for aluminum and 2.5 × 104 liter · mol−1 · cm−1 and 2.5 × 10−3 μg · cm−2 for copper. Seven replicate determinations of sample solutions containing 2.5 μg of aluminum and 6.0 μg of copper gave mean absorbances of 0.520 and 0.480 with relative standard deviations of 1.67 and 0.33%, respectively. Interference due to various foreign ions has been studied and the method has been applied to the determination of aluminum in standard alloys, tea leaves, vehicle particulates, copper in coal fly ash, and commercial salt samples.  相似文献   

8.
An indirect catalytic method for the separate microdetermination of oxalate, citrate, and fluoride ions is described. The method is based on the inhibition action of oxalate, citrate, and fluoride ions on the catalytic oxidation reaction of 2,4-diaminophenol-hydrogen peroxide by iron(III).Procedures for the determination of 1.76 × 10−2 to 17.6 × 10−2 μg/ml for oxalate ion, 3.78 × 10−2 to 30.24 × 10−2 μg/ml for citrate ion, and 0.38 to 4.18 μg/ml for fluoride ion are given.Quantities of 1.76 × 10−2 to 17.6 × 10−2 μg/ml for oxalate ion, 3.78 × 10−2 to 30.24 × 10−2 μg/ml for citrate ion, and 0.38 to 4.18 μg/ml for fluoride ion could be determinated with a relative error of about 1–3.5% for oxalate and citrate ions and 1–2% for fluoride ion.  相似文献   

9.
Two slurry-based ETAAS methodologies are compared to determine directly Cr, Ni and V in coal fly ash, soils and sediments: current slurry analysis (USS) and ‘slurry extraction’ (SE). Slurries for USS-ETAAS were prepared in 0.5% HNO3. HF and HNO3 were evaluated as chemical modifiers. HF was the extractant for the SE-ETAAS approach.A unique slurry-based procedure to measure Cr, Ni and V could not be established. Cr concentrations up to 100 μg g 1 were accurately determined by USS (0.5% HNO3; λ = 429.0 nm; LOD = 0.35 μg g 1) whereas higher contents required the SE procedure (sample grinding, 30% HF; LOD = 0.02 μg g 1). Both methods were appropriate to determine Ni (LOD = 0.11 and 0.08 μg g 1, for USS and SE, respectively). V was satisfactorily quantified only with the USS approach (LOD = 0.80 μg g 1).  相似文献   

10.
A novel flow injection chemiluminescence (CL) system for the determination of isoniazid has been proposed. It is based on the direct CL reaction of isoniazid and Mn(III) in sulfuric acid medium. The unstable Mn(III) was on-line electrogenerated by constant current electrolysis. The CL emission intensity was linear with isoniazid concentration in the range 0.1–10 μg/mL; the detection limit was 3.2 × 10−2 μg/mL. The whole process could be completed in 1 min with a relative standard deviation of less than 5%. The proposed method is suitable for automatic and continuous analysis and has been applied successfully to the analysis of isoniazid in pharmaceutical preparation.  相似文献   

11.
Xu-Wei CHEN  Jiao JIAO  Jian-Hua WANG   《分析化学》2008,36(12):1601-1605
The application of a mesofluidic lab-on-valve system to the spectrophotometric determination of protein was investigated. Protein species in the sample solution reacts rapidly with Congo red at pH 4.1, which forms a complex with a maximum absorption at 496 nm. A univariant approach was used for the optimization of the experimental parameters. A sample volume of 20 μl was used along with 4.0 μl of Congo red solution of 0.9 g l−1, and a flow rate for the detection process of 20 μl s−1 was used. Under optimal conditions, a linear calibration curve was obtained in the range of 12.5–200 μg ml−1 of bovine serum album, along with a detection limit (3σ) of 5.6 μg ml−1 and a sampling frequency of 60 per hour. Protein concentrations in human serums, urine, milk, and yoghourt were determined using this procedure, and satisfactory agreements were obtained with that achieved using the Coomassie brilliant blue method.  相似文献   

12.
The surface state of optically pure polydisperse TiO2 (anatase and rutile) was determined by infra-red (IR) spectroscopy analysis in the temperature range of 100–453 K. Anatase A300 spectrum, contrary to rutile R300 one, has a broad three-component absorption band with peaks at 1048, 1137 and 1222 cm−1 in the spectral range of δ(Ti–O–H) deformation vibrations. For rutile R300 we observed a very weak band at 1047 cm−1, and for the thermal treated rutile R900 these bands were not appeared at all. The analysis of temperature dependencies for the mentioned absorption bands revealed the spectral shift of 1222 cm−1 band towards the high frequencies, when the temperature increased, but the spectral parameters of 1137 and 1048 cm−1 bands remained the same. The temperature of 1222 cm−1 band maximum shift was 373–393 K and correlated with DSC data. Obtained results allowed to assign 1222 cm−1 band to the deformation vibrations of OH-groups, bounded to the surface adsorbed water molecules by weak hydrogen bonds (5 kcal/mol). During the temperature growth these molecules desorbed, which also resulted in the intensity decreasing of stretching OH-groups vibration IR-bands at 3420 cm−1. The destruction and desorption of surface water complexes led to Ti–O–H bond strengthening. IR bands at 1137 and 1048 cm−1 were attributed to the stronger bounded adsorbed water molecules, which are also characterized with stretching OH-groups vibration bands at 3200 cm−1. These surface structure were additionally stabilized by hydrogen bonds with the neighbouring TiO2 lattice anions and other OH-groups, and desorbed at higher temperatures.  相似文献   

13.
The voltammetric behavior of the LMF-Mg(II) complex with DNA at a mercury electrode is reported for the first time. In NH3–NH4Cl buffer (pH=9.10), the adsorption phenomena of the LMF–Mg(II) complex were observed by linear sweep voltammetry. The mechanism of the electrode reaction was found to be a reduction of LMF in the complex, and the composition of the LMF–Mg(II) complex is 2:1. In the presence of calf thymus DNA (ctDNA), the peak current of LMF–Mg(II) complex decreased considerably, and a new well-defined adsorptive reduction peak appeared at −1.63 V (vs. SCE). The electrochemical kinetic parameters and the binding number of LMF–Mg(II) with ctDNA were also obtained. Moreover, the new peak currents of LMF–Mg(II)–DNA system increased linearly correlated to the concentration of DNA in the 4.00×10−7–2.60×10−6 g ml−1 range when the concentrations of LMF–Mg(II) complex was fixed at 5.00×10−6 mol l−1, with the detection limits of 2.33×10−7 g ml−1. An electrostatic interaction was suggested by electrochemical method.  相似文献   

14.
In the work model calculations of the vibrations of ideally isolated silicooxygen rings (using PM3 method) have been carried out. three-, four-, and six-membered rings have been considered. It has been found that that the three-membered silicooxygen rings are flat and practically undeformed showing D3h symmetry. The rings of higher number of ring members (i.e. n>3) are deformed to some extent. The deformation reveals itself most significantly in the Si–O–Si bond angles distribution. In the case of all the rings the bridging Si–O–Si bonds are ca. 0.02–0.04 Å shorter than the non-bridging Si–O bonds. Hypothetical IR spectra for all the rings considered have been also calculated. Analysis of these hypothetical spectra leads to the conclusion that the whole spectrum can be divided into four wavenumbers regions, 1200–1100 cm−1 stretching Si–O(Si) vibrations; 1000–800 cm−1 stretching Si–O vibrations; 800–600 cm−1; the region in which a band characteristic of silicooxygen rings appears, and below 600 cm−1 bending O–Si–O and (Si)O–Si–O(Si). It has been also found that as the number of ring members increases the ‘ring band’ shifts to lower wavenumbers: 725 cm−1 for three-membered rings, 650 cm−1 for four-membered rings and 610 cm−1 for six-membered rings. Calculated spectra have been compared with the experimental spectra of cyclosilicates. They showed good agreement in the 1200–600 cm−1 region. In the experimental spectra as well as in the calculated ones, with increasing the number of ring members the ‘ring band’ shifts towards lower wavenumbers.  相似文献   

15.
A highly selective spectrophotometric method is described for the determination of palladium, using 3,4-dihydro-4,4,6-trimethyl-2(1H)-pyridinethione (DTPT). The intense yellow 1:2 complex is extractable in chloroform from aqueous solution of pH 5.5. The maximum absorption occurs at 420 nm, ε = 3.90 × 104 liter/mol−1 cm−1 and the sensitivity of the determination is 0.023 μg/ml. Palladium can be determined over a range of 0.4–24.6 ppm. CN interferes in this determination and should be absent. The method is applied to the determination of palladium in hydrogenation catalysts.  相似文献   

16.
A new chromogenic reagent, 2-(2-quinolylazo)-5-Dimethylaminophenol (QADMAP) was synthesized, and a sensitive, selective, and rapid method was developed for the determination of the μg/L level of silver ions. The method is based on the rapid reaction of silver(I) with QADMAP and the solid phase extraction of the colored chelate using a C18 cartridge. The QADMAP reacts with Ag(I) in the presence of a citric acid-sodium hydroxide buffer solution (pH 5.0) and a sodium dodecyl sulfonate (SDS) medium to form a violet chelate of molar ratio 1 : 2 (silver to QADMAP). This chelate was enriched by solid phase extraction with C18 cartridge, and the retained chelate was eluted from the cartridge using ethanol (with 1% acetic acid). In the ethanol medium (with 1% acetic acid), the molar absorptivity of the chelate was 1.25 × 105 L mol−1 cm−1 at 584 nm. Beer’s law was obeyed in the range 0.01–0.6 μg/mL. The relative standard deviation for eleven replicate samples of 0.01 μg/mL was 1.86%. The detection limit is 0.02 μg/L in the original samples. The method was applied to the determination of μg/L levels of silver ions in water with good results.__________From Zhurnal Analiticheskoi Khimii, Vol. 60, No. 6, 2005, pp. 566–570.Original English Text Copyright © 2005 by Huang, Yang, Hu, Yin.This article was submitted by the authors in English.  相似文献   

17.
A simple, rapid, sensitive, and selective method for the spectrophotometric microdetermination of silver(I) using ammonium(2′,3′-dihydroxy pyridyl-4′-azo)benzene-4-arsonate (DHP-4A), a water soluble pyridinol azo dye is proposed. The red colored 1:1 (metal to ligand) complex formed has molar extinction coefficient (ε) 2.95 × 104 1 mol−1 cm−1 and absorbs maximum at 535 nm, in highly alkaline medium. Beer's law is obeyed up to 3.36 ppm and Sandell's sensitivity (for an absorbance 0.001) is 0.0037 μg of Ag(I)/cm2. The silver(I)-(DHP-4A) complex has also been used in the microdetermination of iodide ions using ligand exchange reaction. The optimum concentration range of iodide ions which can reproducibly be determined is 1.27–37.9 μg/10 ml.  相似文献   

18.
This work addresses the issue of radiation chemical synthesis of MnO2 nanoparticles and also illustrates the ease of formation of nanorods and sheets by adroit manipulation of experimental conditions. The radiation chemical yield (G-value) for reduction of Mn (VII) by the hydrated electron was found to be 0.27 μmol J−1 and 0.17 μmol J−1 respectively, when tert. butanol and isopropanol were used as scavengers in nitrogen-saturated solutions. The colloids formed upon irradiation of air-saturated solution and N2-purged solution with tert. butanol as scavenger were found to be most stable. Irradiation of air-saturated solution containing 4×10−4 M KMnO4 at a dose of 1692 Gy resulted in the formation of nanorods of the dimension 100–150 nm and nanospheres in the range 10–20 nm. Irradiation of N2-purged solution containing tert. butanol as scavenger for OH-produced reticulated structure of nanorods with length varying from 50 to 100 nm at a dose of 1692 Gy. Elemental analysis was performed using scanning electron microscope on MnO2 formed by reduction and oxidation and the purity was found to be 98% of elemental Mn content.  相似文献   

19.
Propericiazine is proposed as a new reagent for the spectrophotometric determination of gold(III). The reagent forms an orange-red-colored species with gold(III) instantaneously in 4–8 M phosphoric acid. The orange-red species exhibits maximum absorbance at 511 nm. Beer's law is valid over the concentration range 0.1–7.0 μg/ml. The molar absorptivity is found to be 3.85 × 104 liter mol−1 cm−1. The effects of acidity, time, order of addition of reagents, temperature, reagent concentration, and diverse ions are investigated.  相似文献   

20.
This work evaluates Hg, Zn, Fe and Mn transfer from the leachate of a refuse tip based on their accumulation in a sediment core of 17 cm collected in a leachate pond of a small refuse tip ageing approximately 10 years. Sediment samples were digested with an acid mixture (50% acqua regia solution), heated at 70 °C during 1 h, in a thermal-kinetic reactor “cold finger”. The extract was analysed to obtain Hg content by cold vapour absorption atomic spectrometry (CVAAS). Fe, Mn and Zn contents were obtained by flame atomic absorption spectrometry (FAAS) after total decomposition of the samples. Concentration ranges along the core varied from 0.16 to 0.58 μg g− 1; 7.3 to 145 μg g− 1; 11.7 to 116 μg g− 1 and 0.21% to 1.82% for Hg, Zn, Mn and Fe, respectively. All metals showed enrichment in the upper layers (above 6 cm) which probably correspond to the year 1996. Results indicated that Hg transfer is one order of magnitude higher than Zn and suggest that metals accumulation in sediments probably reduce their migration to groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号