首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The low-cost, high-abundance and durable layered double hydroxides (LDHs) have been considered as promising electrocatalysts for oxygen evolution reaction (OER). However, the easy agglomeration of lamellar LDHs in the aqueous phase limits their practical applications. Herein, a series of ternary NiCoFe LDHs were successfully fabricated on nickel foam (NF) via a simple electrodeposition method. The as-prepared Ni(Co0.5Fe0.5)/NF displayed an unique nanoarray structural feature. It showed an OER overpotential of 209 mV at a current density of 10 mA cm−2 in alkaline solution, which was superior to most systems reported so far. As evidenced by the XPS and XAFS results, such excellent performance of Ni(Co0.5Fe0.5)/NF was attributed to the higher Co3+/Co2+ ratio and more defects exposed, comparing with Ni(Co0.5Fe0.5)-bulk and Ni(Co0.5Fe0.5)-mono LDHs prepared by conventional coprecipitation method. Furthermore, the ratio of Co to Fe could significantly tune the Co electronic structure of Ni(CoxFe1-x)/NF composites (x=0.25, 0.50 and 0.75) and affect the electrocatalytic activity for OER, in which Ni(Co0.5Fe0.5)/NF showed the lowest energy barrier for OER rate-determining step (from O* to OOH*). This work proposes a facile method to develop high-efficiency OER electrocatalysts.  相似文献   

2.
We describe the synthesis, crystal structures, and optical absorption spectra/colors of 3d‐transition‐metal‐substituted α‐LiZnBO3 derivatives: α‐LiZn1?xMIIxBO3 (MII=CoII (0<x<0.50), NiII (0<x≤0.05), CuII (0<x≤0.10)) and α‐Li1+xZn1?2xMIIIxBO3 (MIII=MnIII (0<x≤0.10), FeIII (0<x≤0.25)). The crystal structure of the host α‐LiZnBO3, which is both disordered and distorted with respect to Li and Zn occupancies and coordination geometries, is largely retained in the derivatives, which gives rise to unique colors (blue for CoII, magenta for NiII, violet for CuII) that could be of significance for the development of new, inexpensive, and environmentally friendly pigment materials, particularly in the case of the blue pigments. Accordingly, this work identifies distorted tetrahedral MO4 (M=Co, Ni, Cu) structural units, with a long M?O bond that results in trigonal bipyramidal geometry, as new chromophores for blue, magenta, and violet colors in a α‐LiZnBO3 host. From the L*a*b* color coordinates, we found that Co‐substituted compounds have an intense blue color that is stronger than that of CoAl2O4 and YIn0.90Mn0.10O3. The near‐infrared (NIR) reflectance spectral studies indicate that these compounds exhibit a moderate IR reflectivity that could be significant for applications as “cool pigments”.  相似文献   

3.
Catalytic hydrogenation of nitroaromatics is an environment‐benign strategy to produce industrially important aniline intermediates. Herein, we report that Fe(OH)x deposition on Pt nanocrystals to give Fe(OH)x/Pt, enables the selective hydrogenation of nitro groups into amino groups without hydrogenating other functional groups on the aromatic ring. The unique catalytic behavior is identified to be associated with the FeIII‐OH‐Pt interfaces. While H2 activation occurs on exposed Pt atoms to ensure the high activity, the high selectivity towards the production of substituted aniline originates from the FeIII‐OH‐Pt interfaces. In situ IR, X‐ray photoelectron spectroscopy (XPS), and isotope effect studies reveal that the Fe3+/Fe2+ redox couple facilitates the hydrodeoxygenation of the ‐NO2 group during hydrogenation catalysis. Benefitting from FeIII‐OH‐Pt interfaces, the Fe(OH)x/Pt catalysts exhibit high catalytic performance towards a broad range of substituted nitroarenes.  相似文献   

4.
The preparation of noble metal‐free catalysts for water splitting is the key to low‐cost, sustainable hydrogen generation. Herein, through a pyrolysis‐oxidation process, we prepared a series of Co‐Fe‐Ni trimetallic oxidized carbon nanocubes (Co1‐XFeXNi‐OCNC) with a continuously changeable Co/Fe ratio (X=0, 0.1, 0.2, 0.5, 0.8, 0.9, 1). The Co1‐XFeXNi‐OCNC shows a volcano‐type oxygen evolution reaction (OER) activity. The optimized Co0.1Fe0.9Ni‐OCNC achieves a low overpotential of 268 mV at 10 mA cm?2 with a very low Tafel slope of 48 mV dec?1 in 1 m KOH. At the same time, the stability of the Co0.1Fe0.9Ni‐OCNC is also outstanding; after 1000 CV cycles, the LSV plot is almost coincident. Moreover, the potential remains almost of the same value at 10 mA cm?2 after 12 h in comparison to the initial value. The excellent electrocatalytic properties can be attributed to the synergistic cooperation between each component. Therefore, the Co0.1Fe0.9Ni‐OCNC is a promising candidate instead of precious metal‐based electrocatalysts for OER.  相似文献   

5.
Catalytic hydrogenation of nitroaromatics is an environment-benign strategy to produce industrially important aniline intermediates. Herein, we report that Fe(OH)x deposition on Pt nanocrystals to give Fe(OH)x/Pt, enables the selective hydrogenation of nitro groups into amino groups without hydrogenating other functional groups on the aromatic ring. The unique catalytic behavior is identified to be associated with the FeIII-OH-Pt interfaces. While H2 activation occurs on exposed Pt atoms to ensure the high activity, the high selectivity towards the production of substituted aniline originates from the FeIII-OH-Pt interfaces. In situ IR, X-ray photoelectron spectroscopy (XPS), and isotope effect studies reveal that the Fe3+/Fe2+ redox couple facilitates the hydrodeoxygenation of the -NO2 group during hydrogenation catalysis. Benefitting from FeIII-OH-Pt interfaces, the Fe(OH)x/Pt catalysts exhibit high catalytic performance towards a broad range of substituted nitroarenes.  相似文献   

6.
Endowing transition‐metal oxide electrocatalysts with high water oxidation activity is greatly desired for production of clean and sustainable chemical fuels. Here, we present an atomically thin cobalt oxyhydroxide (γ‐CoOOH) nanosheet as an efficient electrocatalyst for water oxidation. The 1.4 nm thick γ‐CoOOH nanosheet electrocatalyst can effectively oxidize water with extraordinarily large mass activities of 66.6 A g?1, 20 times higher than that of γ‐CoOOH bulk and 2.4 times higher than that of the benchmarking IrO2 electrocatalyst. Experimental characterizations and first‐principles calculations provide solid evidence to the half‐metallic nature of the as‐prepared nanosheets with local structure distortion of the surface CoO6?x octahedron. This greatly enhances the electrophilicity of H2O and facilitates the interfacial electron transfer between Co ions and adsorbed ‐OOH species to form O2, resulting in the high electrocatalytic activity of layered CoOOH for water oxidation.  相似文献   

7.
Thermal decomposition of pure Fe(OH)3 and mixed with Co(OH)2 were studied using TG, DTA, kinetics of isothermal decomposition and electrical conductivity measurements. The thermal products were characterized by X-ray diffraction and IR spectroscopy. The TG and DTA analysis revealed the presence of Co2+ retards the decomposition of ferric hydroxide and the formation of -Fe2O3. The kinetics of decomposition showed that the mixed samples need higher energy to achieve thermolysis. The investigation of thermal products of mixed samples indicated the formation of cobalt ferrite on addition ofx=1 or 1.5 cobalt hydroxide. The electrical conductivity accompanying the thermal decomposition decreases in presence of low ratio of Co2+ (x=0.2) via the consumption of holes created during thermal analysis. The continuous increase in values on increasing of Co2+ concentration corresponded to the electron hopping between Fe2+ and Co3+.
Zusammenfassung Mittels TG, DTA und der Kinetik von Messungen der isothermen Zersetzung und der elektrischen Leitfähigkeit wurde die Zersetzung von Fe(OH)3 in reinem Zustand und vermengt mit Co(OH)2 untersucht. Die thermischen Produkte wurden mittels Röntgendiffraktion und IR-Spektroskopie charakterisiert. TG und DTA zeigen, daß die Zersetzung von Eisen(III)-hydroxid und die Bildung von -Fe2O3 durch Gegenwart von Co2+ verzögert wird. Die Zersetzungskinetik zeigt, daß die Mischproben mehr Energie für die Thermolyse benötigen. Die Untersuchung der thermischen Produkte zeigt die Bildung von Cobaltferrit bei Zusatz vonx=1 oder 1,5 Cobalthydroxid. Die elektrische Leitfähigkeit nimmt bei der thermischen Zersetzung in Gegenwart von niedrigen Co2+-Konzentrationen (x=0.2) durch Verbrauch der bei der Thermoanalyse geschaffenen Löcher ab. Das monotone Ansteigen der -Werte bei steigender Co2+-Konzentration stimmt mit dem Überspringen von Elektronen zwischen Fe2+ und Co3+ überein.
  相似文献   

8.
《中国化学快报》2023,34(1):107248
Transition metal hydroxides/oxyhydroxides have recently emerged as highly active electrocatalysts for oxygen evolution reaction in alkaline water electrolysis, while have not yet been widely investigated for hydrogen evolution electrocatalysts owing to their unfavorable H*-adsorption, making it difficult to construct an overall-water-splitting cell for hydrogen production. In this work, we proposed a straightforward and effective approach to develop an efficient in-plane heterostructured CoOOH/Co(OH)2 catalyst via in-situ electrochemical dehydrogenation method, in which the dehydrogenated –CoOOH and Co(OH)2 at the surface synergistically boost the hydrogen evolution reaction (HER) kinetics in base as confirmed by high-resolution transmission electron microscope, synchrotron X-ray absorption spectroscopy, and electron energy loss spectroscopy. Due to the in-situ dehydrogenation of ultrathin Co(OH)2 nanosheets, the catalytic activity of the CoOOH/Co(OH)2 heterostructures is progressively improved, which exhibit outstanding hydrogen-evolving activity in base requiring a low overpotential of 132 mV to afford 10 mA/cm2 with very fast reaction kinetics after 60 h dehydrogenation. The gradually improved catalytic performance for the CoOOH/Co(OH)2 is probably due to the enhanced H*-adsorption induced by the synergistic effect of heterostructures and better conductivity of CoOOH relative to electrically insulating Co(OH)2. This work will open the opportunity for a new family of transition metal hydroxides/oxyhydroxides as active HER catalysts, and also highlight the importance of using in situ techniques to construct precious metal-free efficient catalysts for alkaline hydrogen evolution.  相似文献   

9.
Nickel and iron substituted LaCoO3 with rhombohedrally distorted perovskite structure were obtained in the temperature range of 600-900 °C by thermal decomposition of freeze-dried citrates and by the Pechini method. The crystal structure, morphology and defective structure of LaCo1−xNixO3 and LaCo1−xFexO3 were characterized by X-ray diffraction and neutron powder diffraction, TEM and SEM analyses and electron paramagnetic resonance spectroscopy. The reducibility was tested by temperature programmed reduction with hydrogen. The products of the partial and complete reduction were determined by ex-situ XRD experiments. The replacement of Co by Ni and Fe led to lattice expansion of the perovskite structure. For perovskites annealed at 900 °C, there was a random Ni, Fe and Co distribution. The morphology of the perovskites does not depend on the Ni and Fe content, nor does it depend on the type of the precursor used. LaCo1−xNixO3 perovskites (x>0.1) annealed at 900 °C are reduced to Co/Ni transition metal and La2O3 via the formation of oxygen deficient Brownmillerite-type compositions. For LaCo1−xNixO3 annealed at 600 °C, Co/Ni metal, in addition to oxygen-deficient perovskites, was formed as an intermediate product at the initial stage of the reduction. The interaction of LaCo1−xFexO3 with H2 occurs by reduction of Co3+ to Co2+ prior to the Fe3+ ions. The reducibility of Fe-substituted perovskites is less sensitive towards the synthesis procedure in comparison with that of Ni substituted perovskites.  相似文献   

10.
High‐temperature flame spray pyrolysis is employed for finding highly efficient nanomaterials for use in lithium‐ion batteries. CoOx‐FeOx nanopowders with various compositions are prepared by one‐pot high‐temperature flame spray pyrolysis. The Co and Fe components are uniformly distributed over the CoOx‐FeOx composite powders, irrespective of the Co/Fe mole ratio. The Co‐rich CoOx‐FeOx composite powders with Co/Fe mole ratios of 3:1 and 2:1 have mixed crystal structures with CoFe2O4 and Co3O4 phases. However, Co‐substituted magnetite composite powders prepared from spray solutions with Co and Fe components in mole ratios of 1:3, 1:2, and 1:1 have a single phase. Multicomponent CoOx‐FeOx powders with a Co/Fe mole ratio of 2:1 and a mixed crystal structure with Co3O4 and CoFe2O4 phases show high initial capacities and good cycling performance. The stable reversible discharge capacities of the composite powders with a Co/Fe mole ratio of 2:1 decrease from 1165 to 820 mA h g?1 as the current density is increased from 500 to 5000 mA g?1; however, the discharge capacity again increases to 1310 mA h g?1 as the current density is restored to 500 mA g?1.  相似文献   

11.
A series of tellurides FexTi1?x Te1.65 (x = 0, 0.1, 0.2 …, 1.0) synthesized at 850°C were studied by X-ray phase and X-ray fluorescent analysis and Møssbauer spectroscopy on 57Fe. In this series two solid solutions are formed: phases I and II with homogeneity regions within the limits of 0 ≤ x ≤ 0.3 and 0.9 ≤ x ≤ 1.0, respectively. Iron in this series exists in two various states: Fe2+ sym and Fe2+ asym as differentiated from the series of tellurides FexTi1?x Te1.45 where three states of iron Fe2+ sym, Fe2+ asym, and Fe0 were found. On passing from FexTi1?x Te1.45 to FexTi1?x Te1.65 the number of formed phases decreases, and phase relations become simpler. The absence of Fe0 from phase I of tellurides FexTi1?x Te1.65 can point to the fact that TiTe1.45 and TiTe1.65 belong to different homogeneity regions.  相似文献   

12.
Magnetic interactions in some oxyfluoroferrites of spinel structure with the formula ZnxMe2?xO4?xFx (M = Fe, Co, Ni) Whereas the ferromagnetic spin arrangement of the B-cations is not modified by the Zn2+?Fe3+ substitution in the ZnFe[Fe2+Fe3+]O4?xFx (0 ≤ x ≤ 0,50) spinel, this same substitution leads to a spin canting in the ZnFe[Co2+Fe3+]O4?xFx and ZnFe[Ni2+Fe3+]O4?xFx (0 ≤ x ≤ 0,80) simples. The difference in the magnetic behaviors with regard to the AB and BB interactions can be explained on the basis of the magnetic exchange theory.  相似文献   

13.
Transition‐metal phosphides (TMPs) have emerged as a fascinating class of narrow‐gap semiconductors and electrocatalysts. However, they are intrinsic nonlayered materials that cannot be delaminated into two‐dimensional (2D) sheets. Here, we demonstrate a general bottom‐up topochemical strategy to synthesize a series of 2D TMPs (e.g. Co2P, Ni12P5, and CoxFe2?xP) by using phosphorene sheets as the phosphorus precursors and 2D templates. Notably, 2D Co2P is a p‐type semiconductor, with a hole mobility of 20.8 cm2 V?1 s?1 at 300 K in field‐effect transistors. It also behaves as a promising electrocatalyst for the oxygen evolution reaction (OER), thanks to the charge‐transport modulation and improved surface exposure. In particular, iron‐doped Co2P (i.e. Co1.5Fe0.5P) delivers a low overpotential of only 278 mV at a current density of 10 mA cm?2 that outperforms the commercial Ir/C benchmark (304 mV).  相似文献   

14.
High‐level ab initio and Born–Oppenheimer molecular dynamic calculations have been carried out on a series of hydroperoxyalkyl (α‐QOOH) radicals with the aim of investigating the stability and unimolecular decomposition mechanism into QO+OH of these species. Dissociation was shown to take place through rotation of the C?O(OH) bond rather than through elongation of the CO?OH bond. Through the C?O(OH) rotation, the unpaired electron of the radical overlaps with the electron density on the O?OH bond, and from this overlap the C=O π bond forms and the O?OH bond breaks spontaneously. The CH2OOH, CH(CH3)OOH, CH(OH)OOH, and α‐hydroperoxycycloheptadienyl radical were found to decompose spontaneously, but the CH(CHO)OOH has a decomposition energy barrier of 5.95 kcal mol?1 owing to its steric and electronic features. The systems studied in this work provide the first insights into how structural and electronic effects govern the stabilizing influence on elusive α‐QOOH radicals.  相似文献   

15.
The thermal behavior of CoxFe3?xO4/SiO2 nanocomposites obtained by direct synthesis starting from nonahydrate ferric nitrate and hexahydrate cobalt nitrate in different ratios with and without the addition of 1,4-butanediol was studied. For the synthesis of CoxFe3?xO4 (x = 0.5–2.5) dispersed in the silica matrix a wide Co/Fe molar ratio was used. The decomposition processes, formation of crystalline phases, gases evolvement and mass changes during gels annealing at different temperatures were assessed by thermal analysis. The absence of succinate precursor and a low mass loss were observed in the case of the gel obtained in the absence of 1,4-butanediol. In case of gels obtained using a stoichiometric ratio of Co/Fe, no clear delimitation between Co and Fe succinates was observed, while for samples with a Fe or Co excess, the formation of the two succinates was observed. The evolution of the crystalline phase after annealing (673, 973 and 1273 K) investigated by X-ray diffraction analysis and Fourier transformed infrared spectrometry revealed that in samples with Fe excess, stoichiometric Fe/Co ratio or low Co excess, the cobalt ferrite (CoFe2O4) was obtained as a single phase, while in samples with higher cobalt excess, olivine (Co2SiO4) as a main phase, cobalt oxide and CoFe2O4 as secondary phases were obtained after annealing at 1273 K. The SEM images confirmed the nanoparticles embedding in the silica matrix, while the TEM and X-ray diffraction data showed that the obtained nanoparticles’ size was below 10 nm in most samples.  相似文献   

16.
We have synthesized ultra‐small and uniform FexCo1‐x/graphitic carbon shell (FexCo1‐x/GC) nanocrystals (x=0.13, 0.36, 0.42, 0.50, 0.56, and 0.62, respectively) with average diameters of <4 nm by thermal decomposition of metal precursors in approximately 60 nm MCM‐41 and methane CVD. The composition of the FexCo1‐x/GC nanocrystals can be tuned by changing the Fe:Co ratios of the metal precursors. The FexCo1‐x/GC nanocrystals show superparamagnetic properties at room temperature. The Fe0.50Co0.50/GC, Fe0.56Co0.44/GC, and Fe0.62Co0.38/GC nanocrystals have a single bcc FeCo structure, whereas the Fe0.13Co0.87/GC, Fe0.36Co0.64/GC, and Fe0.42Co0.58/GC nanocrystals have a mixed structure of bcc FeCo and fcc Co. The single bcc‐phased FexCo1‐x/GC nanocrystals functionalized with phospholipid–poly(ethylene glycol) (PL–PEG) in phosphate buffered saline (PBS) are demonstrated to be excellent T1 MRI contrast agents.  相似文献   

17.
The synthesis of filled skutterudite compounds (Ce or Y)yFexCo4-xSb12, through a solid state reaction using chloride of Ce or Y, high purity powder of Co, Fe, and Sb as starting materials, was investigated. (Ce or Y)yFexCo4-xSb12 (x = 0 1.0,y = 0 0.15) compounds were obtained at 850 1 123 K. The results of Rietveld analysis demonstrate that (Ce or Y)yFexCo4-xSb12 synthesized by a solid state reaction possesses a filled skutterudite structure. The filling fraction of Ce or Y obtained by Rietveld analysis agrees well with the composition obtained by chemical analysis. The lattice constant of CeyFexCo4-xSb12 increases with increasing substitution of Fe at Co sites, and with an increasing Ce filling fraction in the Sb-dodecahedron voids. The lattice thermal conductivity of (Ce or Y)yFexCo4-xSb12 decreases significantly with an increasing Ce or Y filling fraction in the voids and with substitution of Fe at Co sites.  相似文献   

18.
A new bixbyite family, Cu1?xTi1?xFe2xO3 (0.15 ≤ x ≤ 0.33) has been synthesized and characterized. The unit cell is cubic: a ~ 9.40Å. The X-ray powder diffraction study shows up an isotypism with the (Fe, Mn)2O3 compounds. There is a disordered distribution of CuII, TiIV, and FeIII over the two cyrstallographic sites: PI and PII. PII is highly distorted (two long MO distances) by the Jahn-Teller effect of CuII. The bixbyite structure is described in terms of polyhedra arrangement, as a particular case of the CM2O3 family. The cation packing is discussed in relation with the existence of the bixbyite structure for the Cu1?xTi1?xFe2xO3 compounds. The electrical properties (σ ~ 10?5(Ω cm)?1 for x = 0.286 at room temperature) show an electron conduction with probably a hopping mechanism.  相似文献   

19.
The present study focuses on the formation and reactivity of hydroperoxo–iron(III) porphyrin complexes formed in the [FeIII(tpfpp)X]/H2O2/HOO? system (TPFPP=5,10,15,20‐tetrakis(pentafluorophenyl)‐21H,23H‐porphyrin; X=Cl? or CF3SO3?) in acetonitrile under basic conditions at ?15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high‐spin [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] could be observed with the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O? O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo‐ to heterolytic O? O bond cleavage is observed for high‐ [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron‐rich porphyrin ligands, electron‐deficient [FeIII(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [FeIII(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)–oxo porphyrin π‐cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

20.
Chemical Transport and Some Physical Properties of Cobalt Iron Sulphide CoyFe1?ySx The chemical transport behaviour of the ternary phase CoyFe1?ySx is explicable on the base of a thermodynamic model. Theory and experiments show that using Gel2 as transport agent the phase CoyFe1?ySx with low contents of sulphur and cobalt (x ≈ 1, y < 0.4) will be transported under deminishing the content of Co and under enrichment of Fe and S whereas by use of HI(NH4I) as transport agent the transport occurs under enrichment of Co and deminishing the Fe and S contents, respectively. The substitution by Co influences on unit-cell dimensions, on the temperature and heat of the phase transition (2C → 1C) as well as on the resistivity jump and hysteresis in connection with this phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号