首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transmembrane β‐peptides are promising candidates for the design of well‐controlled membrane anchors in lipid membranes. Here, we present the synthesis of transmembrane β‐peptides with and without tryptophan anchors, as well as a novel iodine‐labeled d ‐β3‐amino acid. By using one or more of the heavy‐atom labeled amino acids as markers, the orientation of the helical peptide was inferred based on the electron‐density profile determined by X‐ray reflectivity. The β‐peptides were synthesized through manual Fmoc‐based solid‐phase peptide synthesis (SPPS) and reconstituted in unilamellar vesicles forming a right‐handed 314‐helix secondary structure, as shown by circular dichroism spectroscopy. We then integrated the β‐peptide into solid‐supported membrane stacks and carried out X‐ray reflectivity and grazing incidence small‐angle X‐ray scattering to determine the β‐peptide orientation and its effect on the membrane bilayers. These β‐peptides adopt a well‐ordered transmembrane motif in the solid‐supported model membrane, maintaining the basic structure of the original bilayer with some distinct alterations. Notably, the helical tilt angle, which accommodates the positive hydrophobic mismatch, induces a tilt of the acyl chains. The tilted chains, in turn, lead to a membrane thinning effect.  相似文献   

2.
The enantioselective condensing reagent 4,6‐dimethoxy‐1,3,5‐triazine (DMT)/strychnine/BF$\rm{{_{4}^{-}}}$ was obtained by treatment of 2‐chloro‐4,6‐dimethoxy‐1,3,5‐triazine (CDMT) with strychnine tetrafluoroborate. The reagent was useful under typical conditions of solid‐phase peptide synthesis (SPPS) with enantiomerically homogeneous substrates. By SPPS, desired dipeptides were obtained in 84–94% yield using 4 equiv. of racemic Fmoc‐Ala, Fmoc‐Phe, and/or Fmoc‐Tyr for 1 equiv. of Wang resin loaded with Gly, Ala, Leu, Phe, Glu(tBu), and/or Pro, respectively. For all three Fmoc‐protected amino acids, the configuration of the enantiomer preferred under SPPS conditions was independent of the structure of the acylated component and identical to that established in condensations proceeding in solution. In all cases, the enantiomer ratios L /D (er) were in a similar range, and varied from 9 : 92 to 2 : 98 for alanine, and from 90 : 10 to 100 : 0 for aromatic amino acids. The synthesis of Ac‐L ‐Lys(Ac)‐D ‐Ala‐D ‐Ala‐OH from racemic Fmoc‐Ala gave an L /D ratio of 10 : 90 for the esterification of Wang resin, and 0 : 100 for the formation of peptide bonds.  相似文献   

3.
The syntheses of phenacyl N‐(2,2‐dimethyl‐2H‐azirin‐3‐yl)‐L ‐prolinate and allyl N‐(2,2‐dimethyl‐2H‐azirin‐3‐yl)‐L ‐prolinate are reported. Reactions of these 2H‐azirin‐3‐amine derivatives with Z‐protected amino acids have shown them to be suitable synthons for the Aib‐Pro unit in peptide synthesis. After incorporation into the peptide by means of the ‘azirine/oxazolone method’, the C‐termini of the resulting peptides were deprotected selectively with Zn in AcOH or by a mild Pd0‐promoted procedure, respectively.  相似文献   

4.
The synthesis and CD‐spectroscopic analysis of eleven water‐soluble β‐peptides composed of all‐β3 or alternating β2‐ and β3‐amino acids is described. Different approaches for the efficient syntheses of longer‐chain β‐peptides (>9 residues) were investigated. They were synthesized on solid phase with Fmoc‐protected amino acids or Fmoc‐protected di‐ or tripeptide fragments (assembled using solution‐phase synthesis). The use of preformed fragments significantly increased the purity of the crude peptides and facilitated purification. Especially, the use of Fmoc‐protected β2/β3‐dipeptides for the synthesis of a ‘mixed' β2/β3‐nonapeptide proved to be remarkably effective, yielding the crude peptide in 95% purity and without detectable epimerization of the β2‐amino acid residues. This is a significant improvement over previously reported procedures for the solid‐phase synthesis of β‐peptides, and foreshadows that the field of β‐peptide research will now switch from synthesis to the design and study of complex functional ‘β‐proteins'.  相似文献   

5.
We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α‐amino acid attached to a quaternary glyco‐β‐amino acid. In particular, we combined a S‐glycosylated β2,2‐amino acid and two different types of α‐amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β‐dipeptides. The key step in the synthesis involved the ring‐opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur‐containing nucleophile by using 1‐thio‐β‐D ‐glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time‐averaged restraints (MD‐tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β‐amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α‐amino acids due to the presence of CH–π interactions between the phenyl or indole ring and the methyl groups of the β‐amino acid unit.  相似文献   

6.
Constrained peptidomimetic scaffolds are of considerable interest for the design of therapeutically useful analogues of bioactive peptides. We present the single‐step cyclization of (S)‐ or (R)‐α‐hydroxy‐β2‐ or α‐substituted‐α‐hydroxy‐β2, 2‐amino acids already incorporated within oligopeptides to 5‐aminomethyl‐oxazolidine‐2,4‐dione (Amo) rings. These scaffolds can be regarded as unprecedented β2‐ or β2, 2‐homo‐Freidinger lactam analogues, and can be equipped with a proteinogenic side chain at each residue. In a biomimetic environment, Amo rings act as inducers of extended, semi‐bent or folded geometries, depending on the relative stereochemistry and the presence of α‐substituents.  相似文献   

7.
Incorporation of silicon‐containing amino acids in peptides is known to endow the peptide with desirable properties such as improved proteolytic stability and increased lipophilicity. In the presented study, we demonstrate that incorporation of β‐silicon‐β3‐amino acids into the antimicrobial peptide alamethicin provides the peptide with improved membrane permeabilizing properties. A robust synthetic procedure for the construction of β‐silicon‐β3‐amino acids was developed and the amino acid analogues were incorporated into alamethicin at different positions of the hydrophobic face of the amphipathic helix by using SPPS. The incorporation was shown to provide up to 20‐fold increase in calcein release as compared with wild‐type alamethicin.  相似文献   

8.
β‐Amino thioesters are important natural building blocks for the synthesis of numerous bioactive molecules. An organocatalyzed Mannich reaction was developed which provides direct and highly stereoselective access to acyclic β2‐ and β2,3,3‐amino thioesters with adjacent tertiary and quaternary stereocenters. Mechanistic studies showed that the stereochemical course of the reaction can be controlled by the choice of the substrates. The β‐amino thioesters were further functionalized by, for example, stereoselective decarboxylation to access β2,3‐frameworks. In addition, the value of the β‐amino thioesters was shown in coupling‐reagent‐free peptide synthesis.  相似文献   

9.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

10.
We report on the characteristics of the radical‐ion‐driven dissociation of a diverse array of β‐amino acids incorporated into α‐peptides, as probed by tandem electron‐capture and electron‐transfer dissociation (ECD/ETD) mass spectrometry. The reported results demonstrate a stronger ECD/ETD dependence on the nature of the amino acid side chain for β‐amino acids than for their α‐form counterparts. In particular, only aromatic (e.g., β‐Phe), and to a substantially lower extent, carbonyl‐containing (e.g., β‐Glu and β‐Gln) amino acid side chains, lead to N? Cβ bond cleavage in the corresponding β‐amino acids. We conclude that radical stabilization must be provided by the side chain to enable the radical‐driven fragmentation from the nearby backbone carbonyl carbon to proceed. In contrast with the cleavage of backbones derived from α‐amino acids, ECD of peptides composed mainly of β‐amino acids reveals a shift in cleavage priority from the N? Cβ to the Cα? C bond. The incorporation of CH2 groups into the peptide backbone may thus drastically influence the backbone charge solvation preference. The characteristics of radical‐driven β‐amino acid dissociation described herein are of particular importance to methods development, applications in peptide sequencing, and peptide and protein modification (e.g., deamidation and isomerization) analysis in life science research.  相似文献   

11.
Herein we report acid‐directed β‐C(sp3)‐H arylation of α‐amino acids enabled by pyridine‐type ligands. This reaction does not require the installation of an exogenous directing group, is scalable, and enables the preparation of Fmoc‐protected unnatural amino acids in three steps. The pyridine‐type ligands are crucial for the development of this new C(sp3)‐H arylation.  相似文献   

12.
A general and practical PdII‐catalyzed intermolecular silylation of primary and secondary C?H bonds of α‐amino acids and simple aliphatic acids is reported. This method provides divergent and stereoselective access to a variety of optical pure β‐silyl‐α‐amino acids, which are useful for genetic technologies and proteomics. It can also be readily performed on a gram scale and the auxiliary can be easily removed with retention of configuration. The synthetic importance of this method is further demonstrated by the late‐stage functionalization of biological small molecules, such as (?)‐santonin and β‐cholic acid. Moreover, several key palladacycles were successfully isolated and characterized to elucidate the mechanism of this β?C(sp3)‐H silylation process.  相似文献   

13.
The preparation of three new N‐Fmoc‐protected (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) β2‐homoamino acids with proteinogenic side chains (from Ile, Tyr, and Met) is described, the key step being a diastereoselective amidomethylation of the corresponding Ti‐enolates of 3‐acyl‐4‐isopropyl‐5,5‐diphenyloxazolidin‐2‐ones with CbzNHCH2OMe/TiCl4 (Cbz=(benzyloxy)carbonyl) in yields of 60–70% and with diastereoselectivities of >90%. Removal of the chiral auxiliary with LiOH or NaOH gives the N‐Cbz‐protected β‐amino acids, which were subjected to an N‐Cbz/N‐Fmoc (Fmoc=[(9H‐fluoren‐9‐yl)methoxy]carbonyl) protective‐group exchange. The method is suitable for large‐scale preparation of Fmoc‐β2hXaa‐OH for solid‐phase syntheses of β‐peptides. The Fmoc‐amino acids and all compounds leading to them have been fully characterized by melting points, optical rotations, IR, 1H‐ and 13C‐NMR, and mass spectra, as well as by elemental analyses.  相似文献   

14.
N‐Sulfanylethylanilide (SEAlide) peptides were developed with the aim of achieving facile synthesis of peptide thioesters by 9‐fluorenylmethyloxycarbonyl (Fmoc)‐based solid‐phase peptide synthesis (Fmoc SPPS). Initially, SEAlide peptides were found to be converted to the corresponding peptide thioesters under acidic conditions. However, the SEAlide moiety was proved to function as a thioester in the presence of phosphate salts and to participate in native chemical ligation (NCL) with N‐terminal cysteinyl peptides, and this has served as a powerful protein synthesis methodology. The reactivity of a SEAlide peptide (anilide vs. thioester) can be easily tuned with or without the use of phosphate salts. This interesting property of SEAlide peptides allows sequential three‐fragment or unprecedented four‐fragment ligation for efficient one‐pot peptide/protein synthesis. Furthermore, dual‐kinetically controlled ligation, which enables three peptide fragments simultaneously present in the reaction to be ligated in the correct order, was first achieved using a SEAlide peptide. Beyond our initial expectations, SEAlide peptides have served in protein chemistry fields as very useful crypto‐peptide thioesters. DOI 10.1002/tcr.201200007  相似文献   

15.
The synthesis and NMR elucidation of two novel pentacycloundecane (PCU)‐based peptides are reported. The PCU cage amino acids were synthesised as racemates and the incorporation of the cage amino acid with (S)‐natural amino acids produced diastereomeric peptides. The diastereomeric ‘cage’ peptides were separated using preparative HPLC and the NMR elucidation of these PCU containing peptides are reported for the first time. The 1H and 13C NMR spectra showed series of overlapping signals of the cage skeleton and that of the peptide, making it extremely difficult to resolve the structure using one‐dimensional NMR techniques only. The use of two‐dimensional NMR techniques proved to be a highly effective tool in overcoming this problem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
An efficient synthesis of tetrazole analogues of amino acids starting from Nα-Fmoc amino acid in a three-step protocol is reported. The free amino tetrazoles were obtained in good yields and with excellent purity after removal of the Fmoc group. The synthesis of analogues of aspartic and glutamic acids in which the 5-tetrazolyl moiety is inserted at the β/γ carboxyl group starting from Fmoc-Asn and Fmoc-Gln and the incorporation of these tetrazoles into peptides are also described.  相似文献   

17.
We report a general and operationally simple method for the solid phase synthesis of α‐ketoamide peptides using standard Fmoc solid phase peptide synthesis. The method delivers deprotected peptide α‐ketoamides directly upon resin cleavage without any additional steps, and tolerates all side chain functional groups. A small collection of C‐terminal and internal α‐ketoamide peptides – including two reported protease inhibitors (HCV and SUB1) – were prepared in good yields. In addition, we demonstrate that our method serves as versatile platform for the convenient preparation of cyclic α‐ketoamide peptides, photocagged peptide α‐ketoamides, and fluorescently labeled peptides.  相似文献   

18.
Exploration of the full potential of thioamide substitution as a tool in the chemical biology of peptides and proteins has been hampered by insufficient synthetic strategies for the site‐specific introduction of a thioamide bond into a peptide backbone. A novel ynamide‐mediated two‐step strategy for thiopeptide bond formation with readily available monothiocarboxylic acids as thioacyl donors is described. The α‐thioacyloxyenamide intermediates formed from the ynamides and monothiocarboxylic acids can be purified, characterized, and stored. The balance between their activity and stability enables them to act as effective thioacylating reagents to afford thiopeptide bonds under mild reaction conditions. Amino acid functional groups such as OH, CONH2, and indole NH groups need not be protected during thiopeptide synthesis. The modular nature of this strategy enables the site‐specific incorporation of a thioamide bond into peptide backbones in both solution and the solid phase.  相似文献   

19.
Fmoc‐β2hSer(tBu)‐OH was converted to Fmoc‐β2hSec(PMB)‐OH in five steps. To avoid elimination of HSeR, the selenyl group was introduced in the second last step (Fmoc‐β2hSer(Ts)‐OAll→Fmoc‐β2hSec(PMB)‐OAll). In a similar way, the N‐Boc‐protected compound was prepared. With the β2hSe‐derivatives, 21 β2‐amino‐acid building blocks with proteinogenic side chains are now available for peptide synthesis.  相似文献   

20.
Natriuretic peptides (NP) play important roles in human cardiac physiology through their guanylyl cyclase receptors NPR‐A and NPR‐B. Described herein is a bifunctional O‐glycosylated natriuretic peptide, TcNPa, from Tropidechis carinatus venom and it unusually targets both NPR‐A and NPR‐B. Characterization using specific glycosidases and ETD‐MS identified the glycan as galactosyl‐β(1‐3)‐N‐acetylgalactosamine (Gal‐GalNAc) and was α‐linked to the C‐terminal threonine residue. TcNPa contains the characteristic NP 17‐membered disulfide ring with conserved phenylalanine and arginine residues. Both glycosylated and nonglycosylated forms were synthesized by Fmoc solid‐phase peptide synthesis and NMR analysis identified an α‐helix within the disulfide ring containing the putative pharmacophore for NPR‐A. Surprisingly, both forms activated NPR‐A and NPR‐B and were relatively resistant towards proteolytic degradation in plasma. This work will underpin the future development of bifunctional NP peptide mimetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号