首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transition‐metal‐catalyzed copolymerization of olefins with polar functionalized co‐monomers represents a major challenge in the field of olefin polymerization. It is extremely difficult to simultaneously achieve improvements in catalytic activity, polar monomer incorporation, and copolymer molecular weight through ligand modifications. Herein we introduce a polyethylene glycol unit to some phosphine‐sulfonate palladium and nickel catalysts, and its influence on ethylene polymerization and copolymerization is investigated. In ethylene polymerization, this strategy leads to enhanced activity, catalyst stability, and increased polyethylene molecular weight. In ethylene copolymerization with polar monomers, improvements in all copolymerization parameters are realized. This effect is most significant for polar monomers with hydrogen‐bond‐donating abilities.  相似文献   

2.
Transition‐metal‐catalyzed copolymerization reactions of olefins with polar‐functionalized comonomers are highly important and also highly challenging. A second‐coordination‐sphere strategy was developed to address some of the difficulties encountered in these copolymerization reactions. A series of α‐diimine ligands bearing nitrogen‐containing second coordination spheres were prepared and characterized. The properties of the corresponding nickel and palladium catalysts in ethylene polymerizations and copolymerizations were investigated. In the nickel system, significant reduction in polymer branching density was observed, while lower polymer branching densities, as well as a wider range of polar monomer substrates, were achieved in the palladium system. Control experiments and computational results reveal the critical role of the metal−nitrogen interaction in these polymerization and copolymerization reactions.  相似文献   

3.
The replacement of precious metals in catalysis by earth‐abundant metals is currently one of the urgent challenges for chemists. Whereas palladium‐catalyzed copolymerization of ethylene and polar monomers is a valuable method for the straightforward synthesis of functionalized polyolefins, the corresponding nickel‐based catalysts have suffered from poor thermal tolerance and low molecular weight of the polymers formed. Herein, we report a series of neutral nickel complexes bearing imidazo[1,5‐a]quinolin‐9‐olate‐1‐ylidene (IzQO) ligands. The Ni/IzQO system can catalyze ethylene polymerization at 50–100 °C with reasonable activity in the absence of any cocatalyst, whereas most known nickel‐based catalysts are deactivated at this temperature range. The Ni/IzQO catalyst was successfully applied to the copolymerization of ethylene with allyl monomers to obtain the corresponding copolymers with the highest molecular weight reported for a Ni‐catalyzed system.  相似文献   

4.
The introduction of even a small amount of polar functional groups into polyolefins could excise great control over important material properties. As the most direct and economic strategy, the transition‐metal‐catalyzed copolymerization of olefins with polar, functionalized monomers represents one of the biggest challenges in this field. The presence of polar monomers usually dramatically reduces the catalytic activity and copolymer molecular weight (to the level of thousands or even hundreds Da), rendering the copolymerization process and the copolymer materials far from ideal for industrial applications. In this contribution, we demonstrate that these obstacles can be addressed through rational catalyst design. Copolymers with highly linear microstructures, high melting temperatures, and very high molecular weights (close to or above 1 000 000 Da) were generated. The direct synthesis of polar functionalized high‐molecular‐weight polyethylene was thus achieved.  相似文献   

5.
Bulk homopolymerization and copolymerization of 1‐hexene (H) with polar monomers including butyl acrylate (B) and methyl methacrylate (M) in the presence of 1,4‐bis (2,6‐diisopropylphenyl) acenaphthene diimine nickel (II) dibromide catalyst were investigated. Two cocatalysts, including diethyl aluminium chloride (DEAC) and ethyl aluminium sesqui chloride (EASC), were used to activate the catalyst at ambient temperature. In both the homopolymerization and copolymerization of 1‐hexene with polar monomers, the catalyst activity resulted from EASC as cocatalyst was higher than that resulted from DEAC. 1HNMR analysis was used in order to determine incorporation level of polar monomers and branching density of the synthesized polymers. A highest incorporation level of 13.3% mol was obtained using monomer B in the presence of the cocatalyst EASC. In addition, the influence of polar monomers on molecular weight and molecular weight distribution (PDI) was studied for both the homo‐ and co‐polymerizations of 1‐hexene in the presence of various cocatalysts. A higher molecular weight and narrower PDI were obtained by using the DEAC cocatalyst compared to the EASC cocatalyst. Glass transition temperature (Tg) and melting point (Tm) of the synthesized polymers were found to be dependent on the cocatalyst type and comonomer incorporation level. The addition of dichloromethane solvent into reaction medium showed a positive effect on comonomer incorporation which could not be seen in bulk polymerization. However, the presence of dichloromethane led to decrease the catalyst activity and molecular weight of the polymers.  相似文献   

6.
A nickel‐catalyzed cross‐coupling between (hetero)arylborons and unactivated 1‐bromo‐1,1‐difluoroalkanes has been developed. The use of two ligands (a bidentate bipyridine‐based ligand, 4,4′‐ditBu‐bpy, and a monodentate pyridine‐based ligand, DMAP) offers a highly efficient nickel‐based catalytic system to prepare difluoroalkylated arenes which have important applications in medicinal chemistry.  相似文献   

7.
A combinatorial nickel‐catalyzed monofluoroalkylation of aryl halides with unactivated fluoroalkyl halides by reductive cross‐coupling has been developed. This method demonstrated high efficiency, mild conditions, and excellent functional‐group tolerance, thus enabling the late‐stage monofluoroalkylation of diverse drugs. The key to success was the combination of diverse readily available bidentate and monodentate pyridine‐type nitrogen ligands with nickel, which in situ generated a variety of readily tunable catalysts to promote fluoroalkylation with broad scope with respect to both coupling partners. This combinatorial catalysis strategy offers a solution for nickel‐catalyzed reductive cross‐coupling reactions and provides an efficient way to synthesize fluoroalkylated druglike molecules for drug discovery.  相似文献   

8.
Heteroleptic nickel(II) complexes [NiL2L′] of a series of monoanionic and potentially bidentate N‐2‐pyridyl‐sulfonamide ligands [HL] and 2,2′‐bipyridine or 1,10‐Phenanthroline (L′) have been prepared by electrochemical oxidation of a nickel anode in an acetonitrile solution of the ligands. The complexes have been characterized by microanalysis, IR and electronic spectroscopy, magnetic measurements and LSI mass spectrometry. The crystal structure of [Ni(Ms6mepy)2(bipy)] has been determined by x‐ray diffraction and shows the metal in an octahedral NiN6 environment. Octahedral structures are also proposed for the other complexes with the N‐2‐pyridyl‐sulfonamide ligands acting as N,N′ or N, O bidentate systems, depending on the position of the methyl substituent on the pyridine ring.  相似文献   

9.
We inclusively investigated polymerization behavior and structure of copolymer in the copolymerization of propylene and alkylaluminum‐protected polar allyl monomers. The control of the arrangement of polar group in the copolymer was discussed. It was proved that the location of polar group could be controlled by zirconocene catalyst and a kind of polar monomer. The indenyl or the 2‐methylindenyl ligands of zirconocene were favored to produce end‐functionalized polymers. It was also found that the trimethylaluminum‐protected allylamine and triisobutylaluminum‐protected allylmercaptan had superior ability in the synthesis of end‐functionalized polypropylene. On the other hand, the 2‐methyl‐4‐phenylindenyl ligand produced the copolymers containing both the end‐polar unit and inner‐polar unit at the polymer chains. Terpolymerization of propylene, polar allyl monomer, and 5‐hexen‐1‐ol was also conducted. The NMR study of the terpolymer revealed that both the 5‐hexen‐1‐ol and the polar allyl monomer were incorporated into the polymer chain. It has also become apparent that the polar allyl monomer units predominantly occupied the chain end, while the 5‐hexen‐1‐ol units were located at the inner of main chain. Consequently, we have achieved the synthesis of functionalized polypropylene in which the arrangement of polar group was precisely controlled. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1738–1748, 2008  相似文献   

10.
Equilibrium constants are deter mined for the protonation and metal complexation of the nickel(II) complexes with 4‐methyl‐4,7‐diazadecanediamide (4‐Me‐L‐2,2,2), 4,7‐dimethyl‐4,7‐diazadecanediamide (4,7‐N,N′‐Me2‐L‐2,2,2), 4‐ethyl‐4,7‐diazadecanediamide (4‐Et‐L‐2,2,2), and 4‐methyl‐4,8‐ diazaundecane diamide (4‐Me‐L‐2,3,2), in 0.10 M KCl at 25.0°C. The formation kinetics of these nickel (II) complexes have been studied under the same conditions with use of the stopped‐flow technique. The possible path ways for the complexation reaction of nickel (II) with these ligands are discussed. The first metal‐nitrogen bond formation is proposed as the rate‐determining step for the reactions of nickel (II) with the unprotonated ligands; proton loss is the rate‐limiting step in the reactions of nickel (II) with the monoprotonated ligands. Similarly, in dissociation reactions of these nickel (II) complexes, the rate‐determining step for the water dissociation pathway is the break age of the second nickel‐nitrogen bond; the rate‐determining step for the proton‐assisted path way is the protonation of the released amino group. The important factors determining the reactivity of these complexes are considered. The kinetic results of the formation and dissociation reactions of these complexes are consistent with dissociative mechanism.  相似文献   

11.
In this study, new metal chelate monomers based on nickel(II) maleate and chelating N‐heterocycles (2,2′‐bipyridine and 1,10‐phenanthroline) were synthesized and characterized. A detailed analysis of the main stages and features of the kinetics of thermal transformations of metal chelate monomers was carried out. Core‐shell nanomaterials containing nanoparticles of nickel oxide and metallic nickel in a stabilizing nitrogen‐containing polymer matrix were obtained by thermolysis of these monomers. The composition, properties and structure of the nanomaterials were studied using IR spectroscopy, thermal analysis, X‐ray diffraction, atomic force microscopy, scanning electron microscopy, high‐resolution transmission electron microscopy, and energy dispersive X‐ray spectroscopy. The tribological characteristics of NiO nanoparticles as lubricant additives were studied using a pin‐on‐disc tribometer. The coefficient of friction (COF) is the lowest at the optimum concentration of nanoparticles and increasing the concentration above the optimum level leads to an increase in COF.  相似文献   

12.
烯烃聚合催化剂的设计是烯烃配位聚合领域的一个核心科学问题,通过设计合成精确结构的催化剂可以有效地调控催化聚合性能以及聚合产物的结构.后过渡金属催化剂由于其易调变性、对聚合产物支化结构的可控性及对极性单体的容忍性,在烯烃聚合领域引起了广泛的关注.本文介绍了近年来本课题组在[N,N]-二齿镍烯烃聚合催化剂设计方面的研究进展,包括四元环的中性脒基镍催化剂、五元环的-二亚胺镍催化剂、2-胺基吡啶和-胺基亚胺系列镍催化剂,以及六元环的-二亚胺和苯胺基亚胺镍催化剂在烯烃聚合的应用.通过优化后过渡金属镍催化剂结构,可成功实施烯烃活性聚合.  相似文献   

13.
A redox‐relay migratory hydroarylation of isomeric mixtures of olefins with arylboronic acids catalyzed by nickel complexes bearing diamine ligands is described. A range of structurally diverse 1,1‐diarylalkanes, including those containing a 1,1‐diarylated quaternary carbon, were obtained in excellent yields and with high regioselectivity. Preliminary experimental evidence supports the proposed non‐dissociated chainwalking of aryl‐nickel(II)‐hydride species along the alkyl chain of alkenes before selective reductive elimination at a benzylic position. A catalyst loading as low as 0.5 mol % proved to be sufficient in large‐scale synthesis while retaining high reactivity, highlighting the practical value of this transformation.  相似文献   

14.
Complexes [NiI3(mpta)2]I ( 1 ) and [NiI3(ppta)2]I ( 2 ) have been synthesized by reaction of nickel(II) halide salts with ‐1‐methyl‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane iodide (mpta+I?) and 1‐(n‐propyl)‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane bromide (ppta+Br?) respectively. The crystal structures of compounds 1 and 2 are described and are similar, with both compounds crystallizing in monoclinic space groups. The geometry about both nickel atoms is that of a trigonal bipyramid with the cationic phosphine ligands found in the axial positions and the iodide ligands arranged in the equatorial plane.  相似文献   

15.
Despite there being a straightforward approach for the synthesis of 1,2‐dihydropyridines, the transition‐metal‐catalyzed [2+2+2] cycloaddition reaction of imines with alkynes has been achieved only with imines containing an N‐sulfonyl or ‐pyridyl group. Considering the importance of 1,2‐dihydropyridines as useful intermediates in the preparation of a wide range of valuable organic molecules, it would be very worthwhile to provide novel strategies to expand the scope of imines. Herein we report a successful expansion of the scope of imines in nickel‐catalyzed [2+2+2] cycloaddition reactions with alkynes. In the presence of a nickel(0)/PCy3 catalyst, a reaction with N‐benzylidene‐P,P‐diphenylphosphinic amide was developed. Moreover, an application of N‐aryl imines to the reaction was also achieved by adopting N‐heterocyclic carbene ligands. The isolation of an (η2N‐aryl imine)nickel(0) complex containing a 14‐electron nickel(0) center and a T‐shaped 14‐electron five‐membered aza‐nickelacycle is shown. These would be considered as key intermediates of the reaction. The structure of these complexes was unambiguously determined by NMR spectroscopy and X‐ray analyses.  相似文献   

16.
Vinyl polymerized norbornene has some useful properties such as good mechanical strength, optical transparency and heat resistance. Several transition metal complexes have been described in the literature as active catalysts for the vinyl polymerization of norbornene. We now report the use of three types of nickel(II) complexes with N‐heterocyclic carbene (NHC) ligands in the catalytic vinyl polymerization of norbornene under a range of conditions. Specifically, two nickel complexes bearing a chelating bis(NHC) ligand, two nickel complexes bearing two chelating anionic N‐donor functionalized NHC ligands as well as one diiodidonickel(II) complex with two monodentate NHC ligands were tested. The solid‐state structure of bis(1,3‐dimethylimidazol‐2‐ylidene)diiodidonickel(II), as determined by X‐ray crystallography, is presented. The highest polymerization activity of 2.6 × 107 g (mol cat)?1 h?1 was observed using the latter nickel complex as catalyst, activated by methylaluminoxane. The norbornene polymers thus obtained are of high molecular weight but with rather low polydispersity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
New nickel‐based complexes of 1,2‐bis[(2,6‐diisopropylphenyl)imino]acenaphthene (dpp‐bian) with BF4? counterion or halide co‐ligands were synthesized in THF and MeCN. The nickel(I) complexes were obtained by using two approaches: 1) electrochemical reduction of the corresponding nickel(II) precursors; and 2) a chemical comproportionation reaction. The structural features and redox properties of these complexes were investigated by using single‐crystal X‐ray diffraction (XRD), cyclic voltammetry (CV), and electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. The influence of temperature and solvent on the structure of the nickel(I) complexes was studied in detail, and an uncommon reversible solvent‐induced monomer/dimer transformation was observed. In the case of the fluoride complex, the unpaired electron was found to be localized on the dpp‐bian ligand, whereas all of the other nickel complexes contained neutral dpp‐bian moieties.  相似文献   

18.
A series of 8‐(nitro/benzhydryl‐substituted arylimino)‐7,7‐dimethyl‐5,6‐dihydroquinolines and the corresponding nickel halide complexes were synthesized and characterized. Molecular structures of representative nickel complexes were determined by single crystal X‐ray diffraction, showing the dinuclear dimers with distorted square‐pyramidal geometry around the nickel center. The binding energies determined by X‐ray photoelectron spectroscopy (XPS) indicate the effective coordination between the sp2‐nitrogen and nickel atoms as well as the influence of both the halogen ligands and the substituents within dihydroquinolines on the strength of the Ni? N bond. Ethylene polymerization with the nickel precatalysts in presence of either methylaluminoxane or diethylaluminum chloride was explored in detail. For the complexes containing the nitro substituent within the organic ligand, the catalytic activity is inversely proportional to the electron density around the nickel core determined by XPS; such phenomenon is consistent with the conclusion of the computational study stating that the activity of precatalysts is correlated with the net charge on the metal center. In the polymerization process, unimodal and branched polyethylenes containing vinyl or vinylene groups were obtained. The nickel precatalysts bearing bulky benzhydryl within the organic ligand as well as bromide rather than chloride attached to the nickel atom produce polymers with relatively large amount of vinylene groups. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2071–2083  相似文献   

19.
In order to study the steric, inductive, and ring‐strain effects of diamino diamides on the equilibrium and spectral properties of nickel(II)‐diamino diamides complexes, four tetradentate ligands, 4‐methyl‐4,7‐diazadecanediamide(4‐Me‐L‐2,2,2), 4,7‐dimethyl‐4,7‐diazadecanediamide(4,7‐N,N'‐Me2‐L‐2,2,2), 4‐ethyl‐4,7‐diazadecanediamide (4‐Et‐L‐2,2,2), and 4‐methyl‐4,8‐diazaundecanediamide (4‐Me‐L‐2,3,2), have been synthesized. Their protonation constants have been determined potentiometrically in 0.1M KCl at 25.0°C The formation of their nickel(II)‐complexes and the Ni‐O to Ni‐N bond rearrangements at the two amide sites of these complexes have been investigated quantitatively by potentiometric and spectrophotometric techniques under the same conditions. Electronic spectra of the nickel(II)‐complexes of these ligands and their deprotonated species formed in aqueous solution were measured and discussed.  相似文献   

20.
Although various functionalized units can be incorporated into polyolefins by transition metal catalyzed coordination copolymerizations of nonfunctionalized olefins with polar functional monomers, the incorporated functional units are largely limited to a C1 unit from either CO or C2 units from vinyl monomers. Reported here is the Pd‐catalyzed copolymerization of ethylene with cyclopropenone, leading to incorporation of C3 units with functional groups, α,β‐unsaturated ketones, in the chain. Coordination‐insertion of the carbonyl group and ring opening of the strained three‐membered ring are proposed as the key steps in the mechanism. Under different reaction conditions an isolated ketone structure was afforded as the major carbonyl unit, and could be generated by the copolymerization of ethylene with CO formed in situ from cyclopropenone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号