首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 126 毫秒
1.
The nature of intermolecular interactions governing supramolecular polymerizations is very important for controlling their cooperativity. In order to address this problem, supramolecular columns made of PtII and PdII complexes of oligo(phenylene ethynylene)‐based pyridine (OPE) and tetrazolylpyridine ligands (TEP) were investigated through the dispersion‐corrected PM6 method. Aromatic, CH–π, M–Cl and metallophilic interactions helped stabilize the supramolecules studied, and their geometries and associated cooperativities were in excellent agreement with experimental data. The OPE ligand and/or the presence of PtII led to stronger metallophilic interactions and also to cooperative supramolecular polymerizations, which clearly suggests that metallophilic interactions are a key factor for controlling cooperativity. The results indicate that sequential monomer addition is in general less spontaneous than the combination of two larger preformed stacks. The present theoretical investigations contribute to the further understanding of the relation between the thermodynamics of supramolecular polymerizations and the nature of different synthons.  相似文献   

2.
A series of cyclometalated PdII complexes that contain π‐extended R? C^N^N? R′ (R? C^N^N? R′=3‐(6′‐aryl‐2′‐pyridinyl)isoquinoline) and chloride/pentafluorophenylacetylide ligands have been synthesized and their photophysical and photochemical properties examined. The complexes with the chloride ligand are emissive only in the solid state and in glassy solutions at 77 K, whereas the ones with the pentafluorophenylacetylide ligand show phosphorescence in the solid state (λmax=584–632 nm) and in solution (λmax=533–602 nm) at room temperature. Some of the complexes with the pentafluorophenylacetylide ligand show emission with λmax at 585–602 nm upon an increase in the complex concentration in solutions. These PdII complexes can act as photosensitizers for the light‐induced aerobic oxidation of amines. In the presence of 0.1 mol % PdII complex, secondary amines can be oxidized to the corresponding imines with substrate conversions and product yields up to 100 and 99 %, respectively. In the presence of 0.15 mol % PdII complex, the oxidative cyanation of tertiary amines could be performed with product yields up to 91 %. The PdII complexes have also been used to sensitize photochemical hydrogen production with a three‐component system that comprises the PdII complex, [Co(dmgH)2(py)Cl] (dmgH=dimethylglyoxime; py=pyridine), and triethanolamine, and a maximum turnover of hydrogen production of 175 in 4 h was achieved. The excited‐state electron‐transfer properties of the PdII complexes have been examined.  相似文献   

3.
Two structurally similar trans‐bis(pyridine) dichloropalladium(II)‐ and platinum(II)‐type complexes were synthesized and characterized. They both self‐assemble in n‐hexane to form viscous fluids at lower concentrations, but form metallogels at sufficient concentrations. The viscous solutions were studied by capillary viscosity measurements and UV/Vis absorption spectra monitored during the disassembly process indicated that a metallophilic interaction was involved in the supramolecular polymerization process. For the two supramolecular assemblies, uncommon continuous porous networks were observed by using SEM and TEM revealed that they were built from nanofibers that fused and crosslinked with the increase of concentration. The xerogels of the palladium and platinum complexes were carefully studied by using synchrotron radiation WAXD and EXAFS. The WAXD data show close stacking distances driven by π–π and metal–metal interactions and an evident dimer structure for the platinum complex was found. The coordination bond lengths were extracted from fitting of the EXAFS data. Moreover, close PtII–PtII (PdII–PdII) and Pt?Cl (Pd?Cl) interactions proposed from DFT calculations in the reported oligo(phenylene ethynylene) (OPE)‐based palladium(II) pyridyl supramolecular polymers were also confirmed by using EXAFS. The PtII–PtII interaction is more feasible for supramolecular interaction than the PdII–PdII interaction in our simple case.  相似文献   

4.
《化学:亚洲杂志》2017,12(1):145-158
Two classes of cationic palladium(II) acetylide complexes containing pincer‐type ligands, 2,2′:6′,2′′‐terpyridine (terpy) and 2,6‐bis(1‐butylimidazol‐2‐ylidenyl)pyridine (C^N^C), were prepared and structurally characterized. Replacing terpy with the strongly σ‐donating C^N^C ligand with two N‐heterocyclic carbene (NHC) units results in the PdII acetylide complexes displaying phosphorescence at room temperature and stronger intermolecular interactions in the solid state. X‐ray crystal structures of [Pd(terpy)(C≡CPh)]PF6 ( 1 ) and [Pd(C^N^C)(C≡CPh)]PF6 ( 7 ) reveal that the complex cations are arranged in a one‐dimensional stacking structure with pair‐like PdII⋅⋅⋅PdII contacts of 3.349 Å for 1 and 3.292 Å for 7 . Density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) calculations were used to examine the electronic properties. Comparative studies of the [Pt(L)(C≡CPh)]+ analogs by 1H NMR spectroscopy shed insight on the intermolecular interactions of these PdII acetylide complexes. The strong Pd−Ccarbene bonds render 7 and its derivative sufficiently stable for investigation of photo‐cytotoxicity under cellular conditions.  相似文献   

5.
The synthesis of organometallic complexes of modified 26π‐conjugated hexaphyrins with absorption and emission capabilities in the third near‐infrared region (NIR‐III) is described. Symmetry alteration of the frontier molecular orbitals (MOs) of bis‐PdII and bis‐PtII complexes of hexaphyrin via N‐confusion modification led to substantial metal dπ–pπ interactions. This MO mixing, in turn, resulted in a significantly narrower HOMO–LUMO energy gap. A remarkable long‐wavelength shift of the lowest S0→S1 absorption beyond 1700 nm was achieved with the bis‐PtII complex, t ‐Pt2‐3 . The emergence of photoacoustic (PA) signals maximized at 1700 nm makes t ‐Pt2‐3 potentially useful as a NIR‐III PA contrast agent. The rigid bis‐PdII complexes, t ‐Pd2‐3 and c ‐Pd2‐3 , are rare examples of NIR emitters beyond 1500 nm. The current study provides new insight into the design of stable, expanded porphyrinic dyes possessing NIR‐III‐emissive and photoacoustic‐response capabilities.  相似文献   

6.
A series of new, easily activated NHC–PdII precatalysts featuring a trans‐oriented morpholine ligand were prepared and evaluated for activity in carbon‐sulfur cross‐coupling chemistry. [(IPent)PdCl2(morpholine)] (IPent=1,3‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene) was identified as the most active precatalyst and was shown to effectively couple a wide variety of deactivated aryl halides with both aryl and alkyl thiols at or near ambient temperature, without the need for additives, external activators, or pre‐activation steps. Mechanistic studies revealed that, in contrast to other common NHC–PdII precatalysts, these complexes are rapidly reduced to the active NHC–Pd0 species at ambient temperature in the presence of KOtBu, thus avoiding the formation of deleterious off‐cycle PdII–thiolate resting states.  相似文献   

7.
A multidentate and flexible diolefin–diphosphine ligand, based on the dibenzylidene acetone core, namely dbaphos ( 1 ), is reported herein. The ligand adopts an array of different geometries at Pt, Pd and Rh. At PtII the dbaphos ligand forms cis‐ and trans‐diphosphine complexes and can be defined as a wide‐angle spanning ligand. 1H NMR spectroscopic analysis shows that the β‐hydrogen of one olefin moiety interacts with the PtII centre (an anagostic interaction), which is supported by DFT calculations. At Pd0 and RhI, the dbaphos ligand exhibits both olefin and phosphine interactions with the metal centres. The Pd0 complex of dbaphos is dinuclear, with bridging diphosphines. The complex exhibits the coordination of one olefin moiety, which is in dynamic exchange (intramolecular) with the other “free” olefin. The Pd0 complex of dbaphos reacts with iodobenzene to afford trans‐[PdII(dbaphos)I(Ph)]. In the case of RhI, dbaphos coordinates to form a structure in which the phosphine and olefin moieties occupy both axial and equatorial sites, which stands in contrast to a related bidentate olefin, phosphine ligand (“Lei” ligand), in which the olefins occupy the equatorial sites and phosphines the axial sites, exclusively.  相似文献   

8.
Described here is a new and viable approach to achieve Pd catalysis for aerobic oxidation systems (AOSs) by circumventing problems associated with both the oxidation and the catalysis through an all‐in‐one strategy, employing a robust metal–organic framework (MOF). The rational assembly of a PdII catalyst, phenanthroline ligand, and CuII species (electron‐transfer mediator) into a MOF facilitates the fast regeneration of the PdII active species, through an enhanced electron transfer from in situ generated Pd0 to CuII, and then CuI to O2, trapped in the framework, thus leading to a 10 times higher turnover number than that of the homogeneous counterpart for Pd‐catalyzed desulfitative oxidative coupling reactions. Moreover, the MOF catalyst can be reused five times without losing activity. This work provides the first exploration of using a MOF as a promising platform for the development of Pd catalysis for AOSs with high efficiency, low catalyst loading, and reusability.  相似文献   

9.
Palladium‐catalyzed intermolecular coupling of o‐carborane with aromatics by direct cage B?H bond activation has been achieved, leading to the synthesis of a series of cage B(4,5)‐diarylated‐o‐carboranes in high yields with excellent regioselectivity. Traceless directing group ‐COOH plays a crucial role for site‐ and di‐selectivity of such intermolecular coupling reaction. A PdII–PdIV–PdII catalytic cycle is proposed to be responsible for the stepwise arylation.  相似文献   

10.
A series of heteroleptic [Ti 1 2X]? complexes have been selectively constructed from a mixture of TiIV ions, a pyridyl catechol ligand (H2 1 ; H2 1 =4‐(3‐pyridyl)catechol), and various bidentate ligands (HX) in the presence of a weak base, in addition to a previously reported [Ti 1 2(acac)]? (acac=acetylacetonate) complex. Comparative studies of these TiIV complexes revealed that [Ti 1 2(trop)]? (trop=tropolonate) is much more stable than the [Ti 1 2(acac)]? complex, which allows the replacement of acac with trop on the [Ti 1 2(acac)]? complex. This TiIV‐centered site‐selective ligand exchange reaction also takes place on a heteronuclear PdII? TiIV ring complex with the preservation of the PdII‐centered coordination structures. Intra‐ and intermolecular linking between two TiIV centers with a flexible or a rigid bis‐tropolone bridging ligand provided a tetranuclear and an octanuclear PdII? TiIV complex, respectively. These higher‐order structures could be efficiently constructed only through a stepwise synthetic route.  相似文献   

11.
Two trinuclear CoII and ZnII complexes, [(CoL)2(OAc)2Co] and [(ZnL)2(OAc)2Zn], with an asymmetric Salen‐type bisoxime ligand [H2L = 4‐(N,N‐diethylamine)‐2,2′‐[ethylenediyldioxybis(nitrilomethylidyne)]diphenol] were synthesized and characterized by elemental analyses, IR, UV/Vis, and fluorescent spectroscopy. The crystal structures of the CoII and ZnII complexes were determined by single‐crystal X‐ray diffraction methods. The CoII atom is pentacoodinated by N2O2 donor atoms from the (L)2– unit and one oxygen atom from the coordinated acetate ion, resulting in a trigonal bipyramid arrangement. With the help of intermolecular hydrogen bonding C–H ··· O and C–H ··· π interactions, a self‐assembled continual zigzag chain‐like supramolecular structure is formed. The ZnII atom is pentacoodinated by N2O2 donor atoms from the (L)2– unit and one oxygen atom from the coordinated acetate ion, resulting in an almost regular trigonal bipyramid arrangement. A self‐assembled continual 1D supramolecular chain‐like structure is formed by intermolecular hydrogen bonding C–H ··· O and C–H ··· π interactions. Additionally, the photophysical properties of the CoII and ZnII complexes were discussed.  相似文献   

12.
Metal‐mediated base pairs can be used to insert metal ions into nucleic acids at precisely defined positions. As structural data on the resulting metal‐modified DNA are scarce, appropriate model complexes need to be synthesized and structurally characterized. Accordingly, the molecular structures of nine transition metal complexes of N‐methyl‐2, 2'‐dipicolylamine (dipic) are reported. In combination with an azole‐containing artificial nucleoside, this tridentate ligand had recently been used to generate metal‐mediated base pairs (Chem. Commun. 2011 , 47, 11041–11043). The PdII and PtII complexes reported here confirm that the formation of planar complexes (as required for a metal‐mediated base pair) comprising N‐methyl‐2, 2'‐dipicolylamine is possible. Two HgII complexes with differing stoichiometry indicate that a planar structure might also be formed with this metal ion, even though it is not favored. In the complex [Ag2(dipic)2](ClO4)2, the two AgI ions are located close to one another with an Ag ··· Ag distance of 2.9152(3) Å, suggesting the presence of a strong argentophilic interaction.  相似文献   

13.
The photoluminescence spectra of a series of 5‐substituted pyridyl‐1,2,3‐triazolato PtII homoleptic complexes show weak emission tunability (ranging from λ=397–408 nm) in dilute (10?6 M ) ethanolic solutions at the monomer level and strong tunability in concentrated solutions (10?4 M ) and thin films (ranging from λ=487–625 nm) from dimeric excited states (excimers). The results of density functional calculations (PBE0) attribute this “turn‐on” sensitivity and intensity in the excimer to strong Pt–Pt metallophilic interactions and a change in the excited‐state character from singlet metal‐to‐ligand charge transfer (1MLCT) to singlet metal‐metal‐to‐ligand charge transfer (1MMLCT) emissions in agreement with lifetime measurements.  相似文献   

14.
Water‐soluble cationic alkynylplatinum(II) 2,6‐bis(benzimidazol‐2′‐yl)pyridine (bzimpy) complexes have been demonstrated to undergo supramolecular assembly with anionic polyelectrolytes in aqueous buffer solution. Metal–metal‐to‐ligand charge transfer (MMLCT) absorptions and triplet MMLCT (3MMLCT) emissions have been found in UV/Vis absorption and emission spectra of the electrostatic assembly of the complexes with non‐conjugated polyelectrolytes, driven by Pt???Pt and π–π interactions among the complex molecules. Interestingly, the two‐component ensemble formed by [Pt(bzimpy‐Et){C?CC6H4(CH2NMe3‐4)}]Cl2 ( 1 ) with para‐linked conjugated polyelectrolyte (CPE), PPE‐SO3?, shows significantly different photophysical properties from that of the ensemble formed by 1 with meta‐linked CPE, mPPE‐Ala. The helical conformation of mPPE‐Ala allows the formation of strong mPPE‐Ala– 1 aggregates with Pt???Pt, electrostatic, and π–π interactions, as revealed by the large Stern–Volmer constant at low concentrations of 1 . Together with the reasonably large Förster radius, large HOMO–LUMO gap and high triplet state energy of mPPE‐Ala to minimize both photo‐induced charge transfer (PCT) and Dexter triplet energy back‐transfer (TEBT) quenching of the emission of 1 , efficient Förster resonance energy transfer (FRET) from mPPE‐Ala to aggregated 1 molecules and strong 3MMLCT emission have been found, while the less strong PPE‐SO3?– 1 aggregates and probably more efficient PCT and Dexter TEBT quenching would account for the lack of 3MMLCT emission in the PPE‐SO3?– 1 ensemble.  相似文献   

15.
A series of dinuclear cycloplatinated(II) complexes with general closed formula of [Pt2Me2(C^N)2(μ‐P^P)] (C^N = 2‐vinylpyridine (Vpy), 2,2′‐bipyridine N‐oxide (O‐bpy), 2‐(2,4‐difluorophenyl)pyridine (dfppy); P^P = 1,1‐bis(diphenylphosphino)methane (dppm), N,N‐bis(diphenylphosphino)amine (dppa)) are reported. The complexes were characterized by means of NMR spectroscopy. Due to the presence of dppm and dppa with short backbones as bridging ligands, two platinum centres are located in front of each other in these complexes so a Pt…Pt interaction is established. Because of this Pt…Pt interaction, the complexes have bright orange colour under ambient light and are able to strongly emit red light under UV light exposure. These strong red emissions originate from a 3MMLCT (metal–metal‐to‐ligand charge transfer) electronic transition. In most of these complexes, the emissions have unstructured bell‐shaped bands, confirming the presence of large amount of 3MMLCT character in the emissive state. Only the complexes bearing dfppy and dppa ligands reveal dual luminescence: a high‐energy structured emission originating from 3ILCT/3MLCT (intra‐ligand charge transfer/metal‐to‐ligand charge transfer) and an unstructured low‐energy band associated with 3MMLCT. In order to describe the nature of the electronic transitions, density functional theory calculations were performed for all the complexes.  相似文献   

16.
Three solid materials, [Pb( HL )(SCN)2] ? CH3OH ( 1 ), [Pb( HL )(SCN)2] ( 2 ), and [Pb( L )(SCN)]n ( 3 ), were obtained from Pb(SCN)2 and an unsymmetrical bis‐pyridyl hydrazone ligand that can act both as a bridging and as a chelating ligand. In all three the lead center is hemidirectionally coordinated and is thus sterically optimal for participation in tetrel bonding. In the crystal structures of all three compounds, the lead atoms participate in short contacts with thiocyanate sulfur or nitrogen atoms. These contacts are shorter than the sums of the van der Waals radii (3.04–3.47 Å for Pb ??? S and 3.54 Å for Pb ??? N) and interconnect the covalently bonded units (monomers, dimers, and 2D polymers) into supramolecular assemblies (chains and 3D structures). DFT calculations showed these contacts to be tetrel bonds of considerable energy (6.5–10.5 kcal mol?1 for Pb ??? S and 16.5 kcal mol?1 for Pb ??? N). A survey of structures in the CSD showed that similar contacts often appear in crystals of PbII complexes with regular geometries, which leads to the conclusion that tetrel bonding plays a significant role in the supramolecular chemistry of PbII.  相似文献   

17.
The synthesis and the structures of (i) the ligand N,N‐Diethyl‐N′‐3,5‐di(trifluoromethyl)benzoylthiourea HEt2dtfmbtu and (ii) the NiII and PdII complexes of HEt2dtfmbtu are reported. The ligand coordinates bidendate forming bis chelates. The NiII and the PdII complexes are isostructural. The also prepared CuII complex could not be characterized by X‐ray analysis. However, the preparation of diamagnetically diluted powders Cu/Ni(Et2dtfmbtu)2 and Cu/Pd(Et2dtfmbtu)2 suitable for EPR studies was successful. The EPR spectra of the Cu/Ni and Cu/Pd systems show noticeable differences for the symmetry of the CuS2O2 unit in both complexes: the Cu/Pd system is characterized by axially‐symmetric g< and A cu tensors; for the Cu/Ni system g and A Cu have rhombic symmetry. EPR studies on frozen solutions of the CuII complex show the presence of a CuII‐CuII dimer which is the first observed for CuII acylthioureato complexes up to now. The parameters of the fine structure tensor were used for the estimation of the CuII‐CuII distance.  相似文献   

18.
The metallation of two homologous, unsymmetrical BAI (1,3-bis(aryliminio)isoindoline) ligands with palladium acetate leads to square–planar cyclometallated PdII complexes, comprising a C–H bond activated dianionic and tetradentate BAI ligand. In the solid state these isostructural monomeric complexes form a structural motif containing large voids, despite the absence of other than dispersive intermolecular interactions.  相似文献   

19.
Reduction of the Pd?PEPPSI precatalyst to a Pd0 species is generally thought to be essential to drive Buchwald–Hartwig amination reactions through the well‐ documented Pd0/PdII catalytic cycle and little attention has been paid to other possible mechanisms. Considered here is the Pd?PEPPSI‐catalyzed aryl amination of chlorobenzene with aniline. A neat reaction system was used in new experiments, from which the potentially reductive roles of the solvent and labile ligand of the PEPPSI complex in leading to Pd0 species are ruled out. Computational results demonstrate that anilido‐containing PdII intermediates involving σ‐bond metathesis in pathways leading to the diphenylamine product have relatively low barriers. Such pathways are more favorable energetically than the corresponding reductive elimination reactions resulting in Pd0 species and other putative routes, such as the PdII/PdIV mechanism, single electron transfer mechanism, and halide atom transfer mechanism. In some special cases, if reactants/additives are inadequate to reduce a PdII precatalyst, a PdII‐involved σ‐bond metathesis mechanism might be feasible to drive the Buchwald–Hartwig amination reactions.  相似文献   

20.
This paper describes the behavior of various generations of polyglycerol dendrimers that contain a perfluorinated shell. The aggregation in organic solvents is based on supramolecular fluorous–fluorous interactions, which can be described by means of 19F NMR spectroscopy. In order to study the interaction and aggregation phenomena of dendrimers with perfluorinated shell and perfluoro‐tagged guest molecules we investigated [G3.5]‐dendrimer with a perfluorinated shell in the presence of perfluoro‐tagged disperse red. Noteworthy, the interaction intensities varied in an unexpected manner depending on the equivalents of perfluoro‐tagged guest molecules added to the dendrimers in solution which then formed supramolecular complexes based on fluorous–fluorous interactions. We found that these complexes aggregated around residual air in the solvent to form stable micron‐sized bubbles. Their sizes correlated with the interaction intensities measured for certain dendrimer–guest molecule ratios. Degassing of the solutions led to a quasi phase separation between organic and fluorous phase, whereby the dendrimers formed the fluorous phases. Regassing the sample with air afforded bubbles of the initial size again.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号